Slaughter age of 5, 8 & 14 months on collagen content, intramuscular fat and tenderness of lamb

Nicola Schreurs

INTERNATIONAL SHEEPRESEARCH CENTRE

Te Kunenga

ki Pūrehuroa

- Food consumption has gone beyond just considering food for sustenance.
- Increasing food choices.
- Producers, more than ever, need to understand what consumers seek and tailor food to meet consumer specifications.
- Lack of knowledge as to how on-farm treatments influence meat eating quality.

What is intramuscular fat & collagen?

Intramuscular fat

- Fat located within the muscle (between the muscle bundles).
- Known as marbling
- Measured chemically (ether extraction)
- 0-30% of muscle.

Collagen

- Protein 3 chains
- Important role in muscle structure
- Is soluble with heat (cooking)
- Increased crosslinking with age reduces the solubility
- 1-6% of muscle

The muscle is a very organised structure:

- It needs to be for muscle contraction
- Collagen helps to maintain the structure

Surrounds:

- Muscles
- Bundles of muscle fibres
- Individual muscle fibres

Also collagen molecules run along and across the muscle fibres

Purslow 2005; Meat Science

Te Kunenga ki Pūrehuroa

Intramuscular fat & meat quality.

Studies with lamb in Australia indicated:

- IMF of 5% or more required to get high palatability score
- Intramuscular fat explained only 3% of variation in palatability.

Hopkins et al (2006); Aust J Exp Agric

Savell & Cross (1988) In: Designing Foods, National Academy Press.

Correlations - beef quality. Jeremiah et al (2003); Meat Science

	Tenderness	Palatability
IMF	0.21	0.002
Total collagen	-0.38*	-0.48*
Insoluble collagen	-0.51**	-0.59***

Influence of collagen solubility in lamb Young et al 1993; NZJAR

0 = birth 1 = 42 days (1.4 mth) 2 = 70 days (2.3 mth) 3 = 274 days (9 mth) 4 = 365 days (12 mths)

What we wanted to achieve from this research

- Consider the effect slaughter age has on meat quality
 - when are meat quality issues likely to occur?
- Look at the **interaction** of collagen and intramuscular fat on meat quality.
- Low animal numbers but:
 - provided a mechanism to develop collagen methods.
 - a start for considering multifactorial aspects of lamb meat quality

60 spring-born lambs, slaughtered at:

- 5 months
- 8 months
- 14 months

Loins collected – objective meat quality tests:

- 10 samples each slaughter age for IMF
- 14 samples each slaughter age for collagen

Correlations and regressions

Results – Live weight and carcass

	Slaughter age (months)			– P-value	
	5	8	14	P-value	
Final live weight (kg)	42.1 ^c	45.0 ^b	61.6 ^a	<0.001	
Carcass weight (kg)	16.8 ^b	18.2 ^b	28.3 ^a	<0.001	
Dressing out (%)	40.0 ^b	40.7 ^b	46.2 ^a	0.002	
GR (mm)	4.01 ^b	5.64 ^b	11.27 ^a	<0.001	
Lean meat yield (%)	54.3 ^a	54.4 ^a	51.6 ^b	0.018	
Intramuscular fat (%)	2.5 ^b	3.0 ^b	3.8 ^a	0.003	
Number with 2 incisors	0	0	7		

Results – Meat Quality

	Slaughter age (months)			
	5	8	14	- P-value
Intramuscular fat (%)	2.5 ^b	3.0 ^b	3.8 ^a	0.003
рН	5.54 ^a	5.42 ^b	5.45 ^b	<0.001
L* (Lightness)	37.8 ^b	39.1 ^a	39.2 ^a	0.045
a* (Redness)	13.2 ^b	13.3 ^b	15.1 ^a	<0.001
b* (Yellowness)	3.59 ^b	3.33 ^b	4.53 ^a	<0.001
Shear force (kgF)	6.87 ^b	7.98 ^a	5.72 ^c	<0.001
Total collagen (% of lean muscle)	0.96 ^a	0.87 ^a	0.62 ^b	0.020
Soluble collagen (% of total col)	43.1 ^a	32.2 ^{ab}	22.4 ^b	0.007

Te Kunenga ki Pūrehuroa

	IMF	Soluble collagen	Total collagen
Shear Force	-0.08	0.05	0.04
Significance	NS	NS	NS

No correlation:

- Not surprising given small number of samples
- Quite substantial variation between animals
- Likely to be many factors which influence shear force values

INTERNATIONAL

How much variation in shear force is **CENTRE** explained by intrinsic determinants?

Variable	Partial R ² (%)	Additive R ² (%)
Soluble collagen	5.1	5.1
IMF	2.2	7.3
Expressed Juice	2.8	10.1
Total collagen	9.0	19.1
Sarcomere Length	0.1	19.2

Hopkins et al (2006); APS

- Sensory analysis of lamb from four experiments.
- 471 lambs

	Tenderness
Multivariate model	
Intercept	75.5 ± 2.74
Shear force (N)	-0.62 ± 0.08
Intramuscular fat (%)	1.68 ± 0.29
Cooking loss (%)	
Age (months)	-0.25 ± 0.04
R^2	23.7
r.s.d.	9.1

- Meat from the 14-month old sheep not the toughest (not expected)
 - Appears to be interacting role of collagen solubility and IMF content
 - Hogget downgrade justified?
 - Other factors to consider.
- Correlations poor, little variation in shear force between animals explained by collagen & IMF
 - Multiple factors likely to be involved

- Carcass characteristics and meat quality of early weaned lambs (n = 300)
- Carcass characteristics and meat quality measurements correlated to genotype (n = 700)
- Development of a database combining onfarm treatments, carcass characteristics and meat quality

Te Kunenga

ki Pūrehuroa

Comparison of castrate and entire ramlambs for meat quality and skatole in the fat.

Nicola Schreurs

INTERNATIONAL SHEEPRESEARCH CENTRE

Te Kunenga ki Pūrehuroa

Lessons from pigs

Boar taint: undesirable flavour in pork.

- Androstenone: sex steroid.
- Skatole: (3-methylindole): produced in hind-gut from tryptophan.

Threshold concentration for skatole detection: 0.25 µg/g

- Norwegian taste panel: 0.1 µg/g (Lunde *et al.*, 2010).
- Singaporean taste panel: 0.03 µg/g (Leong et al., 2011).

Sheep also produce skatole

- In rumen from tryptophan.
- Pasture diet = high soluble protein.
- No scientific evidence of "ram taint".

Method

- 19 castrated males and 19 entire males
 - Weaned
 - 5-months old
- Grazed together on Autumn pasture for 70 days
- Live weight at start and end
- Slaughtered at commercial abattoir
- Loins (Longissimus dorsi), frozen after 48 hrs chilling
 - Warner Bratzler shear force
 - Colour (L* a* b*)
 - pH
- Intermuscular fat from hind legs
 - Skatole concentration by GCMS

	Entire	Castrate	P-value (T-test)
Live weight at start (kg)	40.3 ± 0.7	37.7 ± 0.6	0.012
Live weight at end (kg)	51.5 ± 1.1	46.6 ± 0.5	<0.001
Liveweight gain (g/day)	160 ± 10	127 ± 5	0.006
Hot carcass weight (kg)	22.0 ± 0.3	20.5 ± 0.3	0.004
GR fat depth (mm)	10.4 ± 0.8	13.5 ± 0.8	0.009

Meat quality

	Entire	Castrate	P-value (T-test)
рН	5.68 ± 0.02	5.70 ± 0.02	NS
L*	39.5 ± 0.4	39.3 ± 0.4	NS
a*	13.0 ± 0.3	12.5 ± 0.3	NS
b*	4.0 ± 0.2	3.7 ± 0.2	NS
Warner Bratzler (log kgF)	1.97 ± 0.06	1.88 ± 0.06	NS
Warner Bratzler (kgF)	7.19	6.52	

Skatole in the fat

Conclusions and Implications

- Ram lamb better growth performance.
- Ram lamb not associated with poorer quality meat compared to castrate.
- Skatole higher in fat from ram lamb.
 - But concentration below detection threshold
 - Flavour issues likely to be dependent on the market

