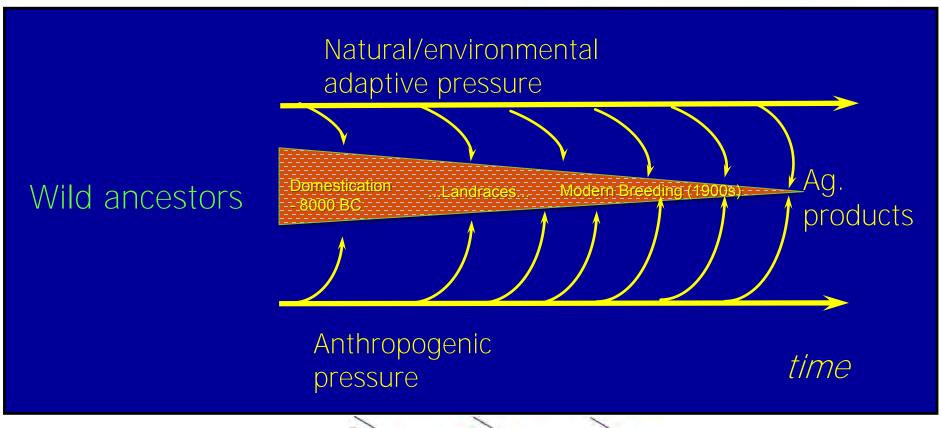
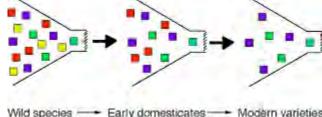
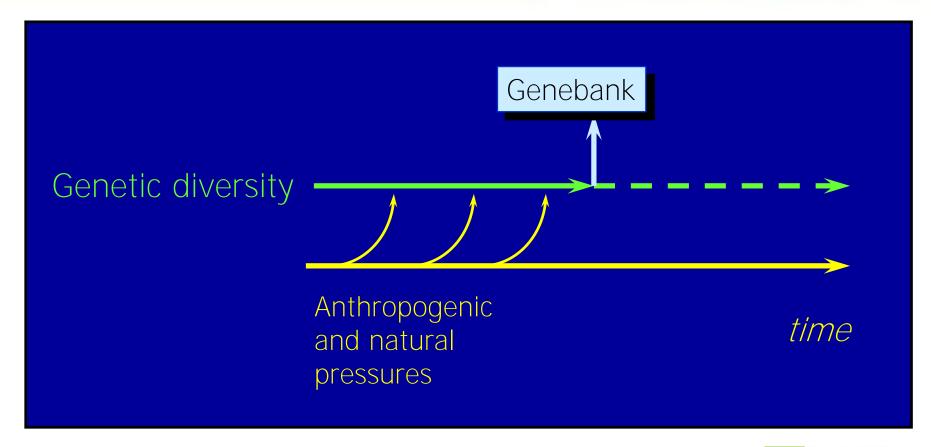
The seven wonders of plants that may change our hill country




KIOUMARS GHAMKHAR

DIRECTOR
MARGOT FORDE FORAGE GERMPLASM CENTRE,
FORAGE IMPROVEMENT, AGRESEARCH

Agriculture: fast and disruptive evolution



- 2,000 genebanks worldwide, 7 m accessions
- These are strategic global assets
- Safety net against the loss of valuable germplasm
- Conserve rich gene pools and help feed the world
- Priceless genes can be lost, even if only collection but no characterisation, regeneration and maintenance.

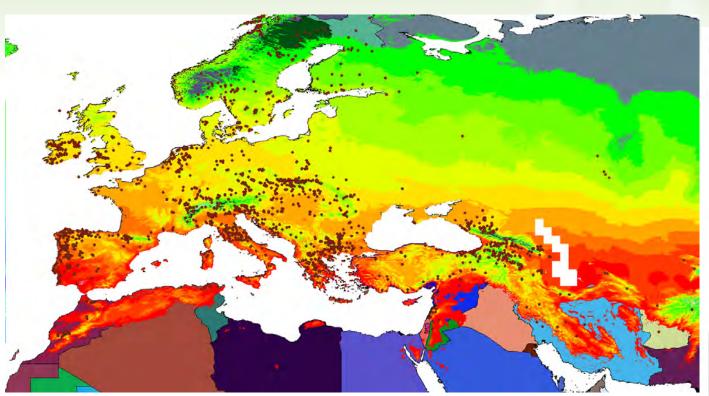
Ex situ conservation: an evolutionary freeze

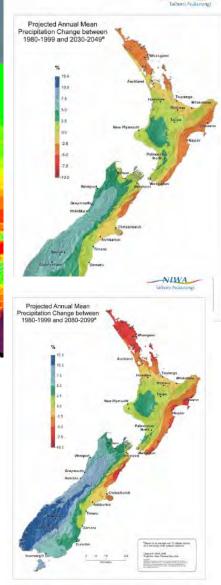
Margot Forde Forage GC Holdings

- 113,000 populations of forage species
- Over 2,200 different species
- Sourced from over 100 different countries
- 390 named fungal endophyte populations
- Oldest population is from 1940
- Over 5000 wild populations collected in the last 5 years

MARGOT FORDE FORAGE GERMPLASM CENTRE

Database


research


Search For: Accession Code: = Accession Number: =		nch for, and separate them using space or comma, e.g. Trifolium repens Tribute. ADVANCED SEARCH Select Accession Code.
Accession Code: =		74 110 120 E A B A B A B A B A B A B A B A B A B A
		74 110 120 E A B A B A B A B A B A B A B A B A B A
		Select Accession Code
Accession Number =		
Accession Date: =		
Weight (gram): =		
Known As: C	contains -	
Genus: =		Select Genos
Species: =		Select Species.
Subspecies: =		Select Subspecies
Seed Class: =		Select Seed Class
Seed Category: =		Select Seed Category
Endophyte Strain: =		Select Endoptlyte Strain
Parentage: C	Contains 🔻	
Restrictions: C	Contains 🔻	
Seed Source: C	Contains 💌	
Source Country: C	Contains 💌	

Welcome if you are registered please logon

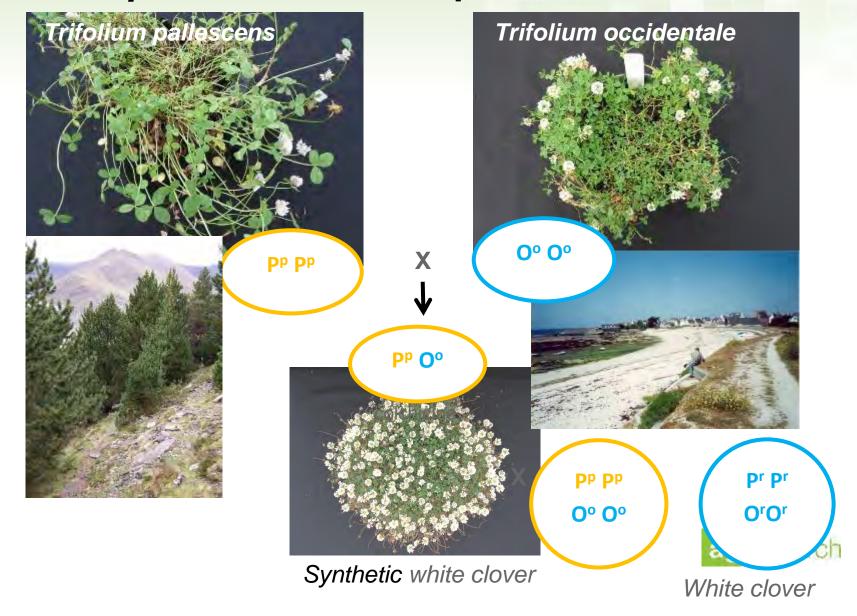
	Welcom	e , if you	are registered please logon		
ield	Select	Order By	Filter On	Options	
accession		*	Choose from Option List 0	Select	
lumber			=	Select	
acc_Date		-	-	Select	
inown_As			-	Select	
Veight		-	-	Select	
enus		-	= *	Select	
pecies		+	= · ·	Select	
eed_Category		-	Choose from Option List 3	Select	
estrictions		-	-	Select	
ommon_Name		-	-	Select	
eed_Class		∵ ▼	Choose from Option List 4	Select	
arentage		Ť	-	Select	
ource_Name		-	-	Select	
ource_Acc_Number		-	±	Select	
ACC_No		¥	=	Select	
ermit_No			=	Select	
uarantine		•	-	Select	
unity			-	Select	
ermination		•	-	Select	
arvest_Date			-	Select	
arvest_Location		+		Select	
ndophyte_Strain			Choose from Option List 1	Select	
ndophyte_Percentage		-	=	Select	
re_Collection_Checklist			-	Select	
ollection_Country		-		Select	
ollection_State		-	-	Select	
offection_City		-	-	Select	
ite_Description		-	-	Select	
ollection_Habitat		-	-	Select	
ollection_Latitude			-	Select	
ollection_Longitude		-	-	Select	
ollection_Climate		÷	-	Select	
ollection_Altitude		-	-	Select	
omments		÷		Select	
rganisationCode			-	Select	
estricted			a	Select	
ategoryCode			=	Select	
rgCountry		-	-	Select	
ex.			=	Select	

Current and future climate match studies

Preparing for future

Change:

- Incremental: doing better of what we are doing now (next 10 years),
 - New cultivars of current species
 - Hybrids of current and new species
- Transformational: meaning something has to give, change and there are consequences (next 10- 15 years).
 - Novel species/practice
 - Subterranean clover
 - Biserrula
 - Woody/hardy legumes


Trifolium uniflorum

Trifolium repens is a natural alloploid. RRR'R' or Pr Pr OrOr

Caucasian clover (T. ambiguum)

- Suited to high altitude
- More drought tolerant than white clover
 - Much deeper root system
- Six cultivars released by CSIRO in 1970 83
 - Seed production issues
- cv. Kuratas released in 2009 to overcome this issue

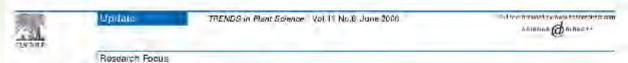
Rhizomes on cv. Kuratas

ALLOPLOID BREEDING

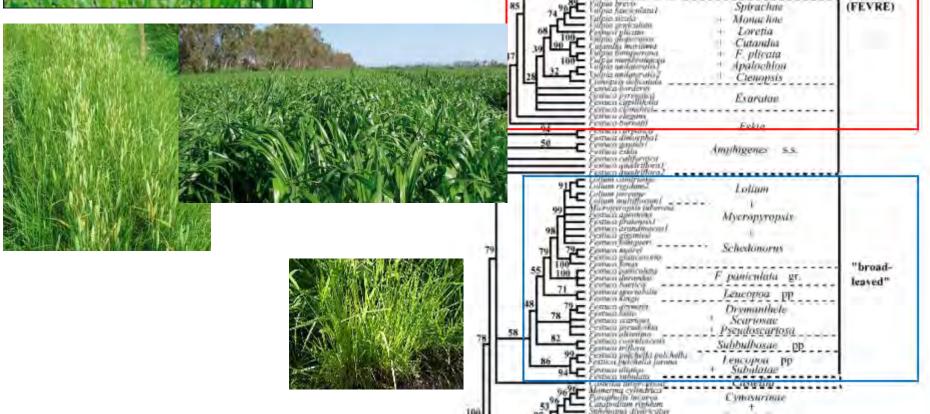
Present

Hybrids of white clover with T. uniflorum and T.occidentale are entering mainstream breeding.

Future.


Great potential to screen within the wild related species for traits that white clover does not have and introduce them through Embryo Rescue

Same model for perennial ryegrass



Wild sex in the grasses

Jason A. Able 1 and Peter Langridge2

¹Molecular Plant Breeding Cooperative Research Centre, School of Agriculture, Food & Wine, The University of Adelaide, Glen Osmand, SA 5064, Australia

²Australian Centre for Plant Functional Genumics, School of Agriculture, Food & Wine, The University of Adelaide, Glen Osmuno, SA 5064, Austrelia

Problem definition and analysis

- Identification of agronomic need or new opportunity
 - New agro-ecological niches that are not filled with existing species
 - New or changing farming systems that existing species are not well adapted to
- Setting broad plant improvement goals and objectives

#1 Subterranean clover (Trifolium subterraneum)

- Most widely sown species in Australia 29 mill. ha (Hill and Donald)
- •ssp. *subterraneum* For well-drained soils
- •ssp. *yanninicum*For poorly drained soils
 Both adapted to soil pH_{Ca} 4.5-6.5
- •ssp. *brachycalycinum*For cracking clays and stony soils

pH_{Ca} 6.0-9.0

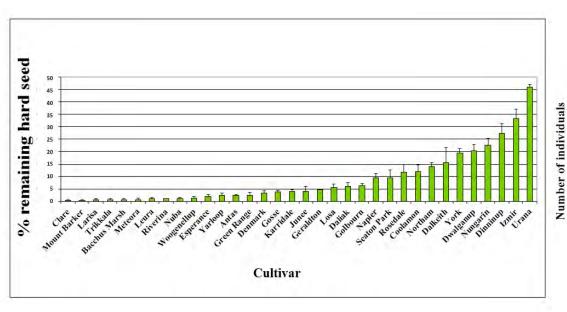
Source: Nichols 2013 and DAFWA website

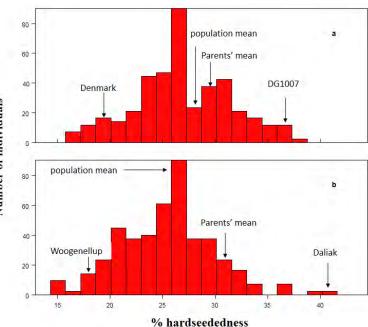
Subterranean clover core :97 out of 10,000

Screening sub clover for hardseededness

Plants:

- Parents of two F2 populations (360) + 16 sets of parents (32)
- 34 cultivars

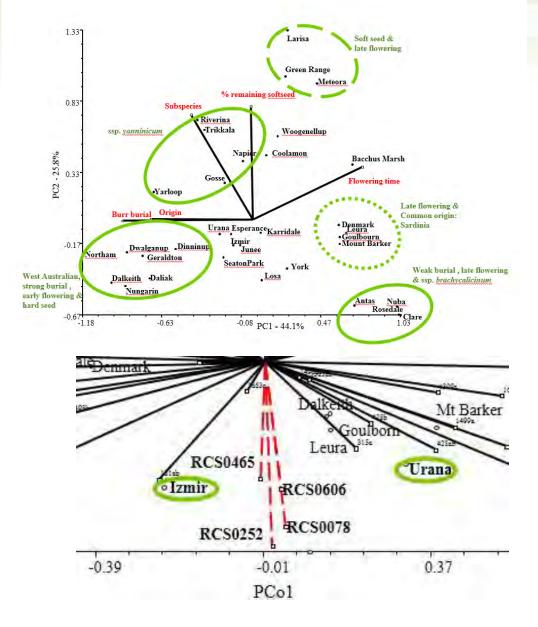

Character	Population 92S0	05 (size: 180)	Population 92S80 (size 180)		
	Denmark	DGI007	Woogenellup	Daliak	
Flowering time (days)	142	86	130	98	
Hardseededness (0-10)	2	8	1	7	



Cultivar	Subspecies	Н	FT
		S	
Antas*	brachycalycinum	4	134
Bacchus Marsh*	subterraneum	1	132
Clare	brachycalycinum	2	130
Coolamon*	subterraneum	7	132
Daliak*	subterraneum	7	98
Dalkeith	subterraneum	9	97
Denmark	subterraneum	2	142
Dinninup*	subterraneum	7	114
Dwalganup*	subterraneum	7	83
Esperance	subterraneum	5	120
Geraldton	subterraneum	8	93
Gosse	yanninicum	4	126
Goulburn	subterraneum	6	143
Green Range*	subterraneum	4	128
Izmir	subterraneum	10	78
Junee	subterraneum	6	126
Karridale	subterraneum	2	139
Larisa	yanninicum	2	140
Leura	subterraneum	2	147
Losa*	subterraneum	5	97
Meteora	yanninicum	6	148
Mount Barker	subterraneum	1	137
Napier	yanninicum	6	140
Northam	subterraneum	7	78
Nuba	brachycalycinum	4	146
Nungarin*	subterraneum	10	77
Riverina	yanninicum	4	119
Rosedale	brachycalycinum	8	114
Seaton Park	subterraneum	6	110
Trikkala	yanninicum	2	112
Urana	subterraneum	10	104
Woogenellup	subterraneum	1	130
Yarloop*	yanninicum	2	110
York	subterraneum	9	110
	000.0		

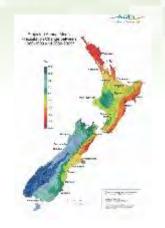
Results

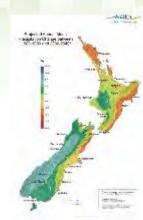
- Multi-gene trait (relatively normal distribution and evident grouping)
- Population 2 more tendency towards softseededness
 - Softseedness a dominant trait.
- Broad range of hard or softseededness available



Analysis of sub clover for hardseededness

- 34 cultivars
 - Flowering time
 - Burr burial
 - Origin (latitude and longitude)
- 2. Two mapping populations
 - Flowering time
 - Isoflavone content
 - •
 - QTLs identified
 - Candidate markers to be tested


 Also a core collection of 97 accessions now available



CORSE-DU-SUD Strait of Bonifacio

Current and future climate match studies

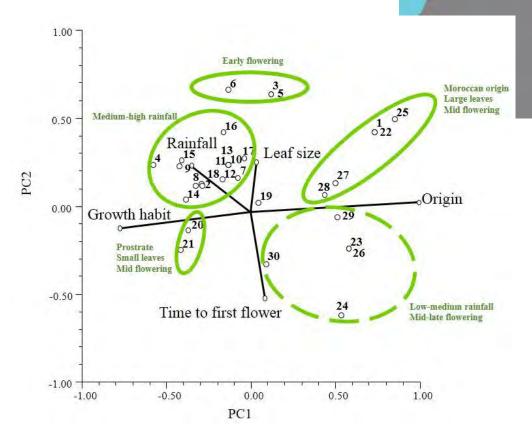
Trifolium subterraneum

cv. Goulburn

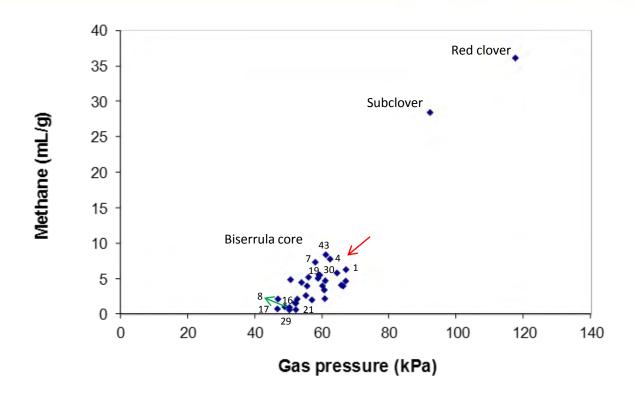
cv. York

cv. Leura

cv. Denmark



2 Biserrula (Biserrula pelecinus L.)


Analysis of biserrula for relevant traits

- 30 accessions out of 280
 - Flowering time
 - rainfall
 - Origin (latitude and longitude)
 - Growth habit

- 2. Methanogenesis
- Lowest among the low range
- 3. Develop a mapping population
- Identify genes/QTLs for traits of interest

Methane mitigation

Methanogenic profile of biserrula and control species

#3 Annual clovers for mid-high rainfall

- Rose clover
- Arrowleaf clover
- Purple clover

#4 Annual clovers for low-medium rainfall

- Gland clover (*T. glanduliferum*)
- Eastern star clover (*T. dasyurum*)
- Bladder clover (*T. spumosum*)

Gland clover

Eastern star clover

Bladder clover

#5 Annual medics (Medicago species)

- Adapted to neutral-alkaline soils
 - Barrel medic (*M. truncatula*)
 - Strand medic (*M. littoralis*)
 - Disc medic (*M. tornata*)
 - Snail medic (*M. scutellata*)
 - Gama medic (*M. rugosa*)
 - Button medic (*M. orbicularis*)
- Acid tolerant species
 - Burr medic (*M. polymorpha*)
 - Murex medic (*M. murex*)
 - Sphere medic (*M. sphaerocarpos*)

Medic regeneration after crop

#6 French serradella (Ornithopus sativus)

- Adapted to infertile, acid sands
- Rainfall 400- 600mm
 - Deep-rooted
 - More drought tolerant than sub
- cv. Cadiz released in 1996
- Soft-seeded at maturity (easy to establish)
- Seed yield (1 t/ha) (Manawatu)
- Forage yield 11 t DM/ha (Manawatu)
- Very fast winter growth ready for harvest early August

#7 Next generation farming? Talish clover

Habit

- Woody base, rhizomatous, prostrate and perennial
- Below ground level growing point (grazing tolerant)

Rainfall

300- 700mm average annual rainfall (drought tolerant).

Soils

- Adapted to a range of soil types pH 5.0 to 8.5.
- Not suited to saline soils.
- Will tolerate moderate levels of aluminum.

Temperature

- Suitable for sowing in temperate or cool Mediterranean climates.
- Tolerant of cold winter temperatures.

Taproot of talish clover (*T. tumens*)

#7 Next generation farming? Astragalus

spp.

A. cicer

Soil: Silty loams or fine clay loams,

pH: 7-8

Low-medium rainfall (400- 900mm)

Suited for mixture with cool season grasses

Suitable for summer grazing

A. adsurgens

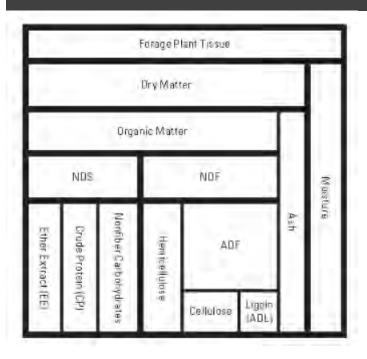
- Prevents soil erosion
- Drought tolerant
- Grazing preference by wild (Canada) and domestic (China) herbivore

A. podolobus

- Grazing preference by wild (and domestic herbivore (Iran)
- Drought tolerant (<500mm).
- Deep root (>1m) and woody (grazing tolerant

A. onobrychis

Suitable for steep land


Food for thought

- If genebanks don't have Information about the characteristics of the plants they contain they are of little value.
- Researchers are not monitoring enough new genes/alleles so farmers are not getting new cultivars or species.

Next challenges

- Forage quality
- Greenhouse gases

Future proof agriculture

- » Climate change
 - Drought tolerance genes
 - Disease resistance genes
 - New region specific species, e.g. for the hill country
- » Genetic erosion
 - Bringing the lost genes back to the breeding lines
 - Developing new crosses and cultivars from the collection
- » Lack of crop resilience/performance
 - Diversification of the endophyte choices
 - Developing region-specific cultivars
- » Biosecurity breaches/concerns
 - Coordination of seed import, compliance and quarantine activities
- » Funding limitations
 - Integration of all food crop, forage, horticulture, forest and vegetable collections
 - Public-private cooperation
 - International collaboration

Applications to EPA and MPI: in progress

- Lolium spp.
 - » 20 species including the relatives: Festuca spp.
 - Returned by EPA but not rejected
 - Under internal and external review for resubmission
- Annual medics
 - MPI very keen to take this forward
 - Feedback to Kioumars by June 15th
- New legumes for hill country
 - Biserrula pelecinus
- Letters of support at the time of and after submission

