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Summary 

Farmers need help to quantify the key soil and terrain features of topographically diverse 

hill-country landscapes, including the dynamics of key micro-indicators such as soil 

temperature and moisture. Farm-scale information on these micro-indicators can drive 

yield models and help inform robust decision-making about pasture management.  

Global, remotely-sensed data on micro-indicators like soil moisture have been available 

for nearly fifteen years, and for any location the remote sensors have impressive revisit 

times in the order of three days. However the grid resolution of these products, which 

ranges from 9000 m to 50 km, is far too coarse to provide evidence about the variation in 

soil variability over tens of metres that is needed to inform decision-making at the farm 

scale. Likewise, best-available national modelling on micro-indicators are also provided at 

a resolution (5,000 m) that is not informative at the farm scale. 

The issue of grid resolution is especially important in New Zealand’s hill-country 

landscapes, where soil conditions can vary markedly with topography. Farm-scale soil 

mapping is best suited to a grid resolution of 50 m or smaller. At this scale, modern sensor 

networks can in principle be coupled to digital soil mapping workflows to model the 

spatial variability in micro-indicators. In practice cost constraints limit the number of 

sensors that can be deployed, which influences the quality of the modelling. The primary 

objective of this study was to determine whether we can map micro-indicators at the farm 

scale in hill-country landscapes using a relatively small number of sensors per farm, and 

the secondary objective was to determine if this farm-scale information on micro-

indicators can be used to map legume yield. 

We installed wireless sensor networks at six hill-country sites across New Zealand and 

monitored soil temperature and moisture at 30 cm depth at hourly intervals from mid-

2020 to July 2022. We fitted generalised additive models to relate micro-indicators to 

other environmental variables and produced daily maps of the micro-indicators at high 

resolution (30 m) for 1 year. Soil temperature was very predictable, but soil moisture was 

only moderately so. We predicted lucerne yield at high resolution using air temperature 

estimated from the soil temperature. 

Based on the results, we concluded that we can map micro-indicators and legume yield at 

farm scale. However, the results highlight the need for additional information on soil 

properties and air temperature to improve the robustness of the soil moisture and yield 

modelling. 

In principle the soil monitoring system can be scaled up to serve areas of arbitrary size, 

such as groups of adjacent farms or farms in a regional catchment. The modelling pipeline 

we describe ought to be robust to a larger number of sensors. Key issues that would need 

to be resolved include the number and placement of network gateways in order to 

minimise the cost of cellular service, and the number of sensor nodes per farm required to 

achieve modelling of adequate quality.   
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1 Introduction 

Robust methods are needed to estimate pasture yields and determine the suitability of 

forage legumes in New Zealand’s hill-country landscapes for on-farm application. In 

addition, models are required to answer broader questions on environmental impacts, 

climate change, nutrient leaching, and carbon sequestration of legume-based pastures.  

Because hill-country farms typically have diverse landscapes within individual farms, 

leading to spatially variable pasture production, farmers need help to quantify key soil and 

terrain features of these landscapes (Mills et al. 2021). This includes how the dynamics of 

micro-indicators such as soil temperature and moisture vary across topographically 

diverse hill-country landscapes. Farm-scale information on micro-indicators could help 

inform robust decision-making of the most suitable locations for, and likely benefits of, 

introducing forage legumes into different areas of hill-country landscapes. 

It is important to understand soil temperature and moisture dynamics, because these 

properties are key drivers of many soil and plant processes. Soil temperature, for instance, 

influences the growth of plant roots, including their morphology, function, and 

metabolism (McMichael & Burke 1998), especially during the early growing season (Kaspar 

& Bland 1992). Root growth tends to increase with increasing soil temperature up to a 

certain point, beyond which it decreases. Water and nutrient uptake by roots are also 

affected by temperature and are reduced at low temperatures (McMichael & Burke 1998). 

Chemical weathering reactions increase with increasing soil temperature, which increases 

the availability of nutrients for root uptake (Pregitzer & King 2005). The activity and 

abundance of soil fauna generally increase with increasing soil temperature, but may be 

limited by water availability when temperatures are too high (Pregitzer & King 2005). 

Soil moisture is the main driver of plant growth on many hill-country farms. It influences 

the amount and timing of plant growth and therefore the animal production systems that 

can be supported (Moot 2012). Soil moisture also causes changes to the physical structure 

of the soil and participates in chemical reactions that release or detain soil nutrients, 

create acidity, and influence the weathering and decomposition of soil minerals (Brady & 

Weil 2017). Finally, it has a major influence on many landscape hydrological processes, 

including flooding, erosion, and solute transport (Western & Blöschl 1999). 

To ensure hill-country farms are sustainable into the future, better information on key soil 

properties such as soil temperature and moisture are needed at the farm scale in order to 

inform decisions about pasture management. Implicit in this is a need to move away from 

sporadic measurement of soil properties at locations assumed to be ‘representative’ and 

towards the implementation of soil monitoring systems that measure soil properties at 

regular intervals and report information (either spatial or aspatial) in near real time 

(Drewry et al. 2019). 

In the last fifteen years, the European Space Agency’s Soil Moisture and Ocean Salinity1 

(SMOS) and the United States’ National Aeronautics and Space Administration’s Soil 

 

1 https://www.esa.int/Applications/Observing_the_Earth/FutureEO/SMOS 
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Moisture Active Passive2 (SMAP) missions launched with the aim of consistently and 

frequently mapping global soil moisture. These remote sensors are able to produce global 

maps about every three days at grid resolutions (cell sizes) that range from 9,000 m 

(SMAP) to 50 km (SMOS). The repeat times are suitable for soil monitoring applications 

but the grid resolutions are too coarse to provide robust information on variability in 

climate conditions that exist at the farm scale, such as between individual hillslopes (Figure 

1). 

Currently the best available source of climate information in New Zealand is NIWA’s 

Virtual Climate Station Network3 (VCSN). The VCSN provides daily estimates of a range of 

climate variables, including soil temperature and soil moisture, on a 5,000 m grid across all 

of New Zealand. We suggest these estimates are unsatisfactory for hill-country pasture 

management for a number of reasons. As for the SMAP and SMOS data products, the grid 

resolution of the VCSN estimates (cell size of 5,000 m) is too coarse to provide robust 

farm-scale climate information (Figures 1 and 2). Also, the VCSN estimates are derived 

from models based on meteorological climate stations, which are conventionally sited on 

flat land so they cannot take into account topography-influenced variations in climate 

parameters. 

 

Figure 1. Comparison of the cell size of existing climate datasets. Location of cells depicted 

against hill country background is for comparative purpose only and does not reflect the true 

orientations of the respective grids. 

 

 

2 https://smap.jpl.nasa.gov/. Not to be confused with S-map, New Zealand’s national digital soil map. 

3 https://niwa.co.nz/climate/our-services/virtual-climate-stations 
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Figure 2. The VCSN prediction grid superimposed on Canterbury hill country. 

1.1 Previous research in New Zealand 

In hill country, soil temperature and moisture conditions can vary markedly with aspect, 

slope, and elevation due to differences in the amount of insolation received at the soil 

surface, which can contribute to spatial variability in pasture growth and composition 

(Sheath & Boom 1985). In New Zealand this has been studied over many decades (e.g. Will 

1959; Dawson & Fisher 1964; Gillingham & Bell 1977; Radcliffe & Lefever 1981; Sheath & 

Boom 1985; Barringer 1997). 

Measurement technology has improved over time. For example, Dawson and Fisher (1964) 

made weekly measurements of soil temperature using copper-constantan thermocouple 

chains. Gillingham and Bell (1977) took measurements at quarterly intervals across 2 years 

using thermistor probes mounted in open-ended stainless steel tubes. Later, Radcliffe and 

Lefever (1981) used thermographs to make more continuous records of soil temperature. 

Thermographs automated measurement and recording, but transcription of 

measurements from charts remained a manual process. Data loggers enabled fully 

automatic measurement and collation of digital soil property data in the 1990s (e.g. 

Barringer 1997), but they had to be retrieved from the field before the data could be 

analysed and interpreted. 

1.2 Wireless sensor networks 

Advances in electronics over the last couple of decades, including in the measurement, 

battery, and communications domains, have enabled measurement of environmental 

variables at higher temporal resolution (e.g. hourly) and for longer durations (e.g. 5 years 

or longer), with easier remote access to data for subsequent analysis and interpretation. 
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Internet of things (IoT) technology enables data to be transmitted from the field to a 

central storage medium, such as a cloud database, directly after measurement (IoT 

Technical Spectrum Working Group 2019). 

These advances converge in the wireless sensor network (WSN). A WSN is a network of 

spatially dispersed sensor nodes that measure something (e.g. micro-indicators such as 

soil temperature and soil moisture) and transmit the measurements back to a central 

device called a gateway. A WSN is ‘wireless’ because communication between the sensors 

and the gateway is done over the air using radio signals. Sensor telemetry may be stored 

at the gateway or forwarded to a remote database. 

Efficient radio communication between components of a WSN is a challenge, especially if 

the components are separated by hundreds or thousands of metres. In the early days 

there was little standardisation of technology, which meant that WSNs had to be designed 

from scratch. Creative solutions were often necessary, and included making use of 

domestic garage-door openers (Ekanayake 2021). This limited the practical size of WSNs 

to the order of 5 km2. Nowadays communication between WSN components is 

standardised. WSNs fall under the umbrella of the IoT, a collection of frameworks and 

protocols that allow efficient wireless connection between electronic devices (IoT Technical 

Spectrum Working Group 2019). 

One type of WSN is the so-called low-power wide-area network (LPWAN). LPWANs are 

designed to enable wireless communication at a low bit rate over long ranges. The low bit 

rate limits the type and volume of data that can be transmitted efficiently, such as a few 

numbers that encode a measurement and a timestamp. As a result, devices connected to 

the LPWAN consume little power because they may only need to be awake briefly to make 

a measurement and transmit associated data before returning to sleep. These 

characteristics make LPWANs attractive for use in environmental monitoring applications, 

where environmental sensors may only need to send small amounts of data a few times 

per hour. 

1.3 Digital soil mapping 

Since the early 1990s many authors (e.g. Odeh et al. 1994, 1995; Knotters et al. 1995; Bui et 

al. 1999; Lagacherie & Voltz 2000) have shown that soil properties measured at points in 

the landscape can be numerically related to other characteristics of the environment, such 

as elevation, slope, and aspect, in an approach that at one time was referred to as 

‘environmental correlation’ (McKenzie & Ryan 1999). McBratney et al. (2003) collated the 

diverse efforts of previous decades and brought them under the umbrella of ‘digital soil 

mapping’. They proposed the following framework: 

𝑆 = 𝑓(𝑠, 𝑐, 𝑜, 𝑟, 𝑝, 𝑎, 𝑛) + 𝜖 

where soil classes or properties 𝑆 can be predicted as a mathematical function of factors, 

including other characteristics of the soil (𝑠), climate (𝑐), organic or biotic factors (𝑜), relief 

or topography (𝑟), soil parent material or lithology (𝑝), age (𝑎), and spatial position (𝑛). 

The function f can be any mathematical model. The term 𝜖 is included to signify the error 

or residuals associated with prediction, which are often spatially autocorrelated. In models, 



 

- 5 - 

the scorpan factors are usually represented by proxies such as raster grids of rainfall or air 

temperature (representing 𝑐), maps of land use or remotely sensed derivatives (𝑜), 

elevation and its derivatives (𝑟), and so on. Collectively the proxies are often referred to as 

scorpan covariates. 

Predictions are also usually made on a raster grid. The scorpan framework can be applied 

to spatially predict soil properties at any spatial scale, which is usually implicit in the spatial 

resolution of the raster grid. For example, for predicting soil at the farm scale we would 

usually target a spatial resolution in the order of 50 m or finer (e.g. Piikki & Söderström 

2019). A much coarser resolution could see significant soil or terrain variability potentially 

occluded, which may be important to understand for farm or paddock scale management. 

1.4 Objectives 

In principle it should be possible to couple WSN-derived measurements of micro-

indicators to the scorpan framework to make farm-scale spatial predictions. In practice 

cost constraints will limit the number of sensors that can be deployed, which will influence 

the quality of the modelling. One test of the results is the size of the numerical 

uncertainties (e.g. the standard errors) associated with the mapped predictions. If the 

uncertainties are too high, then the predictions may not be useful. They will certainly not 

be trustworthy. 

The primary objective of this study is to determine whether we can map micro-indicators 

such as soil temperature and soil moisture at the farm scale. The secondary objective is to 

determine whether we can use predictions of the micro-indicators to model legume yield. 

2 Methods 

2.1 Study area 

Our study area comprised 10 farms distributed across New Zealand hill country. These 

were grouped into six sites, as described in Table 1. Four sites were located in the North 

Island and two in the South Island (Figure 3). The sites ranged in area from 663 ha 

(Tourere) to 11,440 ha (Māhia). Some were located at sea level (Māhia, Prices Valley) and 

others in upland hill country (Mt Somers, Taihape). Tourere and Taihape have a high 

percentage of relatively low-relief terrain, whereas Prices Valley and Taumarunui were 

dominated by hilly and steep country. Some sites also hosted other activities in the wider 

Hill Country Futures project.  
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Table 1. Wireless sensor network sites 

Island Site Farms 
Area 

(ha) 

Min. 

elev. (m) 

Relie

f 

(m)a 

% 

easyb 

% 

hillyc 

% 

steepd 

North 

Island 

Māhia 
Okepuha, Pongaroa 

Station, Taharoa Trust 
11,440 0 408 46.3 27.4 26.4 

Taihape 
Big Hill, Ohinewairua, 

Oruamatua 
10,094 436 767 60.1 25.6 14.3 

Taumarunui Paparata Farms 3,583 118 437 37.1 33.9 29.0 

Tourere Watergreen 663 143 185 84.2 14.7 1.1 

South 

Island 

Mt Somers Inverary 4,328 444 925 42.6 30.9 26.4 

Prices Valley Willesden 3,700 0 781 35.2 32.3 32.5 

aDifference between maximum and minimum elevation at site; bpercentage of site on 0–15° slopes; 
cpercentage of site on 16–25° slopes; dpercentage of site on slopes steeper than 25°. Slope classification is per 

Lilburne et al. 2012. 

 

Figure 3. Locations of the wireless sensor network sites. 
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2.2 Sample site selection 

We installed a WSN at each site. The amount of resources (cost for instrumentation, 

fieldwork, and monitoring) available for sampling was limited, so the choice of the number 

of locations within each site that could be sampled had to be fixed beforehand rather than 

selected through a formal statistical power analysis. The aim, then, was to determine the 

most effective layout of sensor nodes to sample each site, given the constraint of a fixed 

number of nodes, based on prior knowledge of the explanatory factors most likely to 

affect soil temperature and moisture. 

We determined that each WSN would have a sampling allowance of 20 sensor nodes and 

that the locations of the nodes would be spatially distributed using a stratified random 

sampling approach. The stratification allows us to cover as much of the variability in 

perceived drivers of soil temperature and moisture at each site as possible, as represented 

by a small set of scorpan covariates. This should minimise the potential for extrapolation 

of the modelled soil temperature and moisture onto unsampled combinations of the 

covariates. 

The scorpan covariates we used to stratify each site were elevation, aspect, and 

topographic wetness index (TWI; defined below). Given the small sampling budget, we 

combined elevation and slope aspect into a single variable so that it was only necessary to 

stratify across two variables. This meant we could maximise the number of replicates per 

stratum. 

 

Figure 4. Sampling domain and location of sensor network gateway at Mt Somers. 
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The sampling domain was restricted to the parts of each site that were within a short 

distance from farm tracks (usually 250 m, but 100 m in steep landscapes) and that were 

within the viewshed of the WSN gateway. The sampling domain for Mt Somers is shown in 

Figure 4, but the sampling domains for the other sites are presented in the Appendix. The 

configuration of the track buffer represented a compromise between accessibility (with 

field equipment and WSN components) and coverage of the site. The viewshed restriction 

was to ensure sensor nodes had direct line-of-sight radio communication with the 

gateway. 

Elevation (Figure 5) was chosen because there is a well-established negative correlation 

with soil temperature (Shreve 1924; Gloyne 1971; Schmidlin et al. 1983; Amundson et al. 

1989). Soil moisture is less clearly correlated with elevation, and its distribution is more 

strongly driven by local or regional topographic factors. 

 

Figure 5. Elevation at Mt Somers. 

 

Slope (Figure 6) and aspect (Figure 7) are key drivers of soil temperature and moisture 

dynamics via differences in the amount of insolation received from the sun (Pregitzer & 

King 2005). Slope is the steepness of a surface expressed as the angle of that surface to 

the horizontal. Aspect is the direction the surface faces, expressed as an angle relative to 

north, where 0° is north-facing, 90° is east-facing, 180° is south-facing and so on. Since 

aspect is measured on a circular scale, 360° is also north-facing. 

In the southern hemisphere, south-facing slopes receive less direct insolation than north-

facing slopes so they tend to be cooler and wetter (Sheath & Boom 1985). This has been 

demonstrated in New Zealand in a number of studies (e.g. Radcliffe & Lefever 1981; 

Radcliffe 1982; Gillingham et al. 1998). 
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Figure 6. Slope at Mt Somers. 

 
Figure 7. Aspect at Mt Somers. 

Beven and Kirkby (1979) proposed the topographic wetness index (TWI; Figure 8) as a 

means of modelling the effect of variable contributing area and slope gradient on surface 

saturation and soil water content in a range of landscapes. The TWI is defined as: 

TWI = ln (
𝑎

tan𝛽
) 
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Where ln is the natural logarithm, 𝑎 is the specific catchment area (m2/m) and 𝛽 is the 

slope gradient. The specific catchment area at a point in the landscape is the area of 

landscape drained per unit contour length. In general, larger values of TWI are supposed 

to indicate parts of the landscape where water is more likely to accumulate. These are 

typically areas of steep, concave topography where water is more likely to converge, and 

low-gradient landscapes, where water is likely to accumulate because of the low hydraulic 

gradient (Burt & Butcher 1985). We thought it might be useful for predicting soil moisture 

if spatial variation in TWI were captured in the sampling design. We note, however, that 

judging by the literature its usefulness as a predictor has been mixed (Western et al. 1999). 

 

Figure 8. Topographic wetness index at Mt Somers. 
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We used our previous experience with soil temperature and moisture modelling (Barringer 

1997; Barringer & Lilburne 2000) to devise a method to combine elevation and aspect into 

a single variable (herein called ‘elasp’; Figure 9). The aim was to devise a variable that 

correlated with soil temperature, so that by sampling along this variable one would expect 

to sample the expected range of soil temperature values. We devised the following 

relationship. 

elasp =
elevation

900
⋅ 2 +

aspect

180
⋅
slope

12
 

Elevation (in metres) is divided by 900 because it is unlikely that legumes would be sown 

any higher than 900 m. It is multiplied by 2 because previous work (Barringer 1997; 

Barringer & Lilburne 2000) had suggested the elevation effect was about twice as strong 

as aspect, and the slope effect was weaker again. Slope gradient was pre-treated by 

setting slopes less than 12° to 12°. It is divided by 12 to recognise that the effect of slope 

decreases as slope gradient decreases. Aspect is divided by 180 to reduce the size of the 

effect, and it is multiplied by slope gradient to reduce the effect of aspect on shallow 

slopes. 

 

Figure 9. Combined elevation-aspect covariate (elasp) at Mt Somers. 
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The first step in the sampling analysis was to carry out a principal components analysis on 

the TWI and elasp rasters. Figure 10 shows a plot of the variance of the two principal 

components. The majority (102.7 times the variance of the second principal component) of 

the variance is explained by the first principal component (Figure 10). This suggests that 

the first principal component from the TWI and elasp could be used as the basis of the 

sampling. 

 

Figure 10. Variances of the principal components of elasp and topographic wetness index at 

Mt Somers. 
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The approach we used was to split the image of the first principal component into 𝑁 strata 

based on quantiles (Figure 11), and then each stratum is sampled based on some spatial 

sampling method. Using 𝑁 = 5 strata with a total sample allowance of 20 means there 

were four replicate sensor nodes in each stratum. It would be desirable if these replicates 

were spread spatially across the stratum. 

 

Figure 11. Images of (a) principle component 1 and (b) the quantile cut for Mt Somers. 

 

One could use any one of many spatial sampling methods to distribute the sensor nodes 

within strata (Gruijter et al. 2006); the simplest of these would be simple random sampling. 

We chose to use balanced acceptance sampling (Robertson et al. 2013) for this analysis 

because it provides good spatial balancing within a stratum. To allow for the situation 

where proposed sampling points land on places where it is impossible to sample (e.g. on a 

building, tree, fenceline or track), we gathered five sets of 20 points so that there were 

plenty of alternatives if one of the sets was unsuitable. 

 



 

- 14 - 

 

Figure 12. Image of the Mt Somers site split into five strata based on quantiles. Plotted 

points are the four points selected in each or the strata. Two sets of spatially balanced points 

are shown. 

Figure 12 shows an image of the quantiles from the first principal component, overlaid by 

two sets of spatially balanced points. The points in the second (or another) set would be 

used if any of the points from the first set fell in inaccessible locations. Although replacing 

an inaccessible point disturbs the spatial balancing of the data, the result is still a random 

set of samples, with the same required number in each stratum. Of course, if too many of 

the points in a set needed replacing, it might be better to start again and use a new set. 

The important principle is to have the points selected by random selection, with an equal 

probability of every location within each stratum being selected. 

A crucial assumption that underpins the success of the sampling method is that the 

sampling can be carried out by cutting the first principal component of the TWI and elasp 

rasters using quantiles, and that the first principal component is strongly dominant. If this 

is not the case, sampling across this principal component would not cover the range of 

values in the two covariate images. Table 2 gives the ratio of the variance of the first to the 

second principal component. In all cases, the assumption appears to be reasonable. 

Table 2. Ratio of the variance of the first to the second principal component for each site 

Site Variance ratio 

Māhia 105.43 

Mt Somers 102.71 

Prices Valley 43.07 

Taihape 12.42 

Taumarunui 39.11 

Tourere 84.26 
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2.3 Wireless sensor networks 

2.3.1 Design 

The LoRa Alliance maintains standards related to one popular type of LPWAN (LoRa 

Alliance Technical Marketing Workgroup 2015), and we designed our WSNs to these 

standards. The two key components of the LoRa Alliance standard are the LoRaWAN 

specification, which defines the software and associated protocols that allow components 

to communicate with each other using a common language (the network protocol); and 

the LoRa specification, which defines the physical radio hardware that uses the common 

language to communicate between components. 

Each sensor node is controlled by an Atmel SAM D21 microcontroller unit (MCU). One of 

the advantages of using the Atmel MCU is that it has a 32-bit ARM® Cortex® central 

processing unit, which is compatible with the popular Arduino integrated development 

environment.4 This makes it relatively easy to write and compile the software that runs on 

the Atmel MCU. Each sensor node is equipped with an RFM95 LoRa transceiver module, 

which enables radio communication with the WSN gateway (Figure 13). The nodes are 

powered by two 3.6 V lithium-thionyl chloride batteries, which should be sufficient to 

provide a 5–10-year service life. 

 

4 https://www.arduino.cc  

https://www.arduino.cc/
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Figure 13. The circuit board that controls the WSN gateway, showing important components. 

Electronics at each sensor node are similar but omit the ESP8266 WiFi controller. 

 

The WSN gateways are equipped with the same electronics as the sensor nodes (Figure 

13). They are also equipped with an ESP8266 WiFi module to connect to a cellular modem 

that enables communication with the outside world, and a remote-reset device that makes 

it possible to reboot the gateway via the cellular network if necessary. Each gateway is 

powered by a 100 Ah sealed lead acid battery with 80 W photovoltaic backup (Figure 14). 
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Figure 14. Tourere WSN gateway with major components labelled. 

 

The sensors themselves are SM150T soil moisture sensors manufactured by Delta-T 

Devices in the United Kingdom.5 We selected these sensors based on our favourable 

experience with an earlier model (e.g. Hedley et al. 2013; Ekanayake & Hedley 2018), and 

because they also measure soil temperature. This allowed us to minimise the amount of 

electronics we had to install in the ground. 

The soil moisture values are derived from the calibration equation supplied by the sensor 

manufacturer to relate the raw sensor measurements to volumetric moisture content. As 

such, the measurements are strictly relative. It was deemed impractical to calibrate each 

sensor to soil conditions at each node at installation, but addressing this issue could be a 

focus of future work. 

 

5 https://delta-t.co.uk/product/sm150t/ 

https://delta-t.co.uk/product/sm150t/
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Figure 15. Schematic representation of how sensor nodes are set up in the field. 

 

The sensor nodes are each equipped with a single, directional, high-gain Yagi antenna to 

send and receive the LoRa radio signals between the node and the gateway (Figure 15). 

The antenna is directional because the gateway is located at a fixed, known azimuth from 

true north, relative to each sensor node. On the other hand, the gateways are each 

equipped with a single, omnidirectional, low-power dipole antenna (Figure 14). The 

gateways require an omnidirectional antenna because they must communicate with 20 

sensor nodes that are located at different azimuths relative to the gateway. Due to the 

nature of the different types of antennae, communication from the sensor node to the 

gateway is often more reliable than communication from the gateway to the sensor nodes. 

The software running on the Atmel MCUs is written in Arduino’s C-like language. The 

nodes are programmed to measure the soil temperature, soil moisture, and battery 

voltage once per hour, and to transmit the measurements to the gateway. Each hour the 

gateway is programmed to receive the hour’s data from all sensor nodes and send it to 

the cloud storage in one transmission.  
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2.3.2 Assembly and installation 

Assembly of the sensor nodes coincided with New Zealand’s first nationwide lockdown of 

the Covid-19 pandemic in March and April 2020, and notably took place in J. Ekanayake’s 

home living room (see Figure 16, MWLR 2020 and Young 2020). The WSNs were installed 

in the field over several months in the middle of 2020 (Table 3). 

Table 3. Installation periods for the WSNs 

Site Installation period 

Māhia September 2020 

Mt Somers July 2020 

Prices Valley June and August 2020 

Taihape June 2020 

Taumarunui August 2020 

Tourere July 2020 

 

 

Figure 16. Assembly of the sensor nodes in J. Ekanayake’s living room during Covid-19 

lockdown. 
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At each sensor node, the electronics enclosure and Yagi antenna were mounted on a steel 

fencepost that was driven vertically into the ground. The sensors were installed about 3 m 

upslope at a depth of 30 cm, with the two electrodes oriented horizontally with respect to 

each other and at 90 from vertical (Figure 15). The installation hole was backfilled to the 

surface with the original soil material. On steep slopes, the steel post holding the 

electronics was enclosed by four steel posts and barbed wire (Figure 17), and we took 

advantage of the farms’ electric fencing where possible. On flatter areas we used timber 

post-and-rail fencing. 

 

Figure 17. A sensor node at Prices Valley. 

 

At each site the gateway was sited on the hilltop that afforded the maximum visibility of 

the site to ensure radio communication with the sensor nodes was as good as possible, 

and to ensure good cellular network coverage. 

Sampling locations at Mt Somers are presented in Figure 18. Maps of sampling locations 

at the other sites are presented in the Appendix. 
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Figure 18. Location of sampling domain, WSN gateway, and sensor nodes at Mt Somers. 

 

2.4 Data management and analysis 

2.4.1 Soil temperature 

Here we take a brief look at some characteristics of the WSN telemetry that informed the 

approach we took to model it. Results and interpretation of the telemetry itself are 

described in later sections. 

Figure 19 shows plots of the difference in time between successive measurements, 

grouped by site and sensor node (note that the y-scale is log-transformed). The plot 

essentially shows the temporal sampling interval for the data. Sampling rates as high as 

one measurement per second can be seen, but the majority of sampling is approximately 

at hourly intervals. 
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Figure 19. Distribution of the difference in time between sorted samples across all wireless 

sensor networks. 

 

It is difficult to treat the data as a strict time series because the sampling interval varies 

widely, so some level of temporal aggregation is an obvious step. Figure 19 suggests 

aggregation to at least hourly data, and daily data are probably more convenient. 

Figure 20 shows a plot of soil temperatures from Mt Somers after restricting the data to 

temperatures in the range –5 to 30°C to exclude implausible values. A seasonal pattern is 

evident, but there are several artefacts, including: 

1 some periods where the temperature does not change over time, due to 

malfunctioning electronics 

2 temperature values outside the expected range. 
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Figure 20. Raw soil temperature for the Mt Somers WSN, with soil temperatures limited to 

the range –5 to 30°C. Panel labels indicate the relevant sensor node. 

 

The above artefacts most likely represent periods when the sensors failed, and in these 

cases it makes sense to remove these data. The data are also sampled hourly, which for 

this analysis is arguably too much data. To make the analysis simpler, the following 

transformations were carried out (in order). 

1 Data were removed if they were outside the range –5 to 30°C. 

2 Data were restricted to a window date and time to avoid spurious temperatures 

associated with transport and installation. 

3 Data were removed if the temperature difference between samplings was precisely 

zero. 

4 Data were removed if the number of samples within a day was less than 15. 

5 The maximum, minimum, median, and standard deviation temperature were 

calculated for each date. 

Transformation 1 retains soil temperature data that are inside the plausible range given 

the sampling depth. Transformation 2 removes data that were recorded after the gateway 

was commissioned but before sensor nodes were installed in the field. Transformation 3 

accounts for malfunctioning sensor nodes. Transformation 4 allows for stable daily 

summary statistics of the soil temperature data. 
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Figure 21. Daily median soil temperature data for the Mt Somers WSN after trimming the 

start and end dates, and removal of low and high temperatures and periods of no change in 

soil temperature. Panel labels indicate the respective sensor node. Points that were removed 

as a result of the data trimming are shown in orange, while presumed valid points are in 

black. 

 

Figure 21 shows a plot of median soil temperatures for each date from Mt Somers after 

processing the data in the above manner. Plots for the other sites are presented in the 

Appendix. The problematic regions of data are now missing, and the trends are clearer. 

Extending the above analysis to other sites requires identifying the dates during which the 

data are valid. All sites were well behaved in terms of start and end date, except for 

Mt Somers, which required trimming. 
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Figure 22. Daily median soil temperature data for all sites after trimming of the start and end 

dates, removal of small and large temperatures, and periods of no change in soil 

temperature. Locally estimated scatterplot smoothing (LOESS) lines are drawn through data 

for sensor nodes 1, 10, and 19 for each site. Points that have been excised from the data are 

shown in orange. 

 

Figure 22 shows daily median soil temperature data for all sites after applying the 

processing steps, with locally estimated scatterplot smoothing (LOESS) lines (Cleveland 

1979; Cleveland & Devlin 1988) drawn through the data for nodes 1, 10, and 19, and with 

points removed from the data set indicated in orange. The filtered data appear to be as 

expected and suitable for analysis. Most importantly, the points that have been removed 

appear to be true outliers. 
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Figure 23. Daily median soil temperature data for all sites for January 2021, to show fine 

temporal-scale behaviour. For a given day of January, each point corresponds to one sensor 

node. Prices Valley is not shown because there is no data from that site for January 2021. 

 

Figure 23 shows a plot like Figure 22, but only for the month of January 2021, to show the 

nature of fine temporal-scale behaviour (if any). There is some variation (the graphs 

suggested a period of about 10 days6), but it is minor. The fine temporal-scale behaviour is 

important in the construction of a model for soil temperature and moisture to properly 

characterise the uncertainty of predictions. 

2.4.2 Soil moisture 

Figure 24 shows a plot of soil moisture from Mt Somers after restricting the data to values 

in the range 0 to 100% (the possible range of values). A seasonal pattern is not very clear 

in this case and there are several artefacts, including: 

• a short period at the start of the record where there are spurious moisture values 

• some periods where the moisture does not change over time. 

 

6 A 10-day cycle is frequently seen in temperature and atmospheric data in New Zealand, although it is 

surprising to see it expressed in soil temperature data. 
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Figure 24. Raw soil moisture data for the Mt Somers site. Panel labels indicate the respective 

sensor node. 

 

As we did for soil temperature, the following transformations were carried out (in order) 

on the soil moisture data to remove the artefacts. 

1 Data were removed if they were outside the range 0 to 100%. 

2 Data were restricted to a window date and time to avoid spurious soil moisture 

values. 

3 Data were removed if the soil moisture difference between samplings was precisely 

zero. 

4 Data were removed if the number of samples within a day was less than 15. 

5 The maximum, minimum, median, and standard deviation of the soil moisture were 

calculated for each date. 

Transformation 1 retains soil moisture data that are within the expected range for 

volumetric soil moisture. Transformation 2 removes data that were recorded after the 

gateway was commissioned but before sensor nodes were installed in the field. 

Transformation 3 accounts for malfunctioning sensor nodes. Transformation 4 allows for 

stable daily summary statistics of the soil moisture data. 
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Figure 25 shows a plot of median site soil moisture for each date from Mt Somers after 

processing the data in the above manner. Plots for the other sites are presented in the 

Appendix. The problematic regions of data are now missing, and the trends are somewhat 

clearer (although not necessarily as clear as for soil temperature). Figure 26 shows median 

soil moisture data for all sites after processing, as before, with LOESS lines drawn through 

data for sensor nodes 1, 10, and 20 for each site, and with points that were excised from 

the data set filled-in in orange. 

 

Figure 25. Daily median soil moisture data for the Mt Somers site after trimming of the start 

and end dates, removal of low and high soil moisture values, and periods of no change in soil 

moisture. Panel labels indicate the respective sensor node. Points excised from the data are 

shown in orange.  

 

The filtered data appear to be reasonably well behaved and suitable for analysis. Most 

importantly, the points that have been excised appear to be true outliers. The trend is for a 

minimum soil moisture some time in February or March, and a maximum in July or August, 

much as expected. 
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Figure 26. Daily median soil moisture data for all sites after trimming of the start and end 

dates, removal of small and large soil moisture values, and periods of no change in soil 

moisture. Smoothed LOESS lines are drawn through data for sensor nodes 1, 10, and 19 for 

each site. Points that have been excised from the data are shown in orange. 

 

2.5 Modelling 

2.5.1 Soil temperature and moisture 

General approach 

One could use many different approaches to establish a relationship between the scorpan 

covariates and the response variables of interest. Because the data are sampled over time, 

it appears that a time series model would be suitable because the data probably exhibit 

some degree of temporal auto-correlation. There are, however, several problems with the 

time series approach. 

1 Gaps in temporal sampling are not always easily handled. The usual approach is 

imputation of the missing data using contextual data and covariates (e.g. Afrifa-

Yamoah et al. 2020). Figure 27 shows plots of the distribution of the difference in days 

between sorted samples for each site and sensor node. Because the data have been 

aggregated daily, the interval of 1 day is strongly represented, but there are 
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occasional gaps where one or more samples are missing (the time between samples is 

greater than 1 day). Occasionally there are longer gaps where stations have lost valid 

data completely. The short gaps could probably be easily fixed using imputation, but 

longer gaps present a much more difficult problem. 

2 The time series model would be of considerable complexity, because it would need to 

incorporate relationships between sensor nodes at a site, between sites within the 

whole data set, and between soil temperature and soil moisture. Some of these 

relationships could be ignored, such as the relationship between sites, but the final 

model would still be highly complex. 

 

Figure 27. Distribution of the difference in time between aggregated daily data, in days, for 

each site and sensor node. Points are coloured by sensor node. 

 

The alternative approach to the problem is to use some variation on linear regression, with 

possibly a multivariate response of soil temperature and soil moisture. This has the 

advantage that gaps in the data are not important, while the relationship between sensor 

nodes and sites can be handled by way of the scorpan covariates. The complexities 

involved in this approach are as follows. 

1 Because the data cover just over a year in total, and since most sites do not provide 

data for even one full year, it would be difficult to estimate the variation in the soil 

temperature and soil moisture between years. For this reason, the soil temperature 
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and soil moisture should be constrained to be circular over the year; i.e. the estimated 

soil temperature at the start of the year should be the same as the estimated soil 

temperature at the end of the year. This constraint is needed so that this within-year 

variation can be added to fixed values for the soil temperature and soil moisture for 

each year, whether derived from data or presumed from other sources. 

2 Because the data are probably auto-correlated to some degree, it is likely that the 

residuals from a standard linear model would also be auto-correlated, violating an 

invariable assumption of independent data. Correcting for this behaviour is certainly 

possible, and important for correct calculation of uncertainty in predictions, but is not 

always straightforward, depending on the type of model chosen. 

On balance, the regression-based approach appears to be the one with the fewest 

potential difficulties, so it was selected as the general approach for this problem. Although 

there are many different regression methods that could be used, here we use the 

generalised additive model (GAM; Wood 2017), which can be written as: 

𝑦̂ = 𝛽0 + 𝑓1(𝑥1) + 𝑓2(𝑥2) + I + 𝑓𝑛(𝑥𝑛) 

where the response 𝑦̂, representing soil temperature or moisture, is the sum of the overall 

mean 𝛽0 and smooth functions 𝑓1( ), 𝑓2𝐼. . . , 𝑓𝑛( ) of covariates 𝑥1, 𝐼, . . . , 𝑥𝑛 . The method is 

generalised in the sense that non-Gaussian responses can be accommodated; this is 

important in the present case with soil moisture, which is constrained to the range 0 to 1 

(i.e. 0–100%). The fitting method uses the R package mgcv (mixed GAM computational 

vehicle), which is based on the reduced rank solution approach with automatic smoothing 

parameter selection (Wood 2017). 

The principal advantage of the GAM approach is that it easily (and generally, 

automatically) handles non-linearities in the relationship, as well as interactions and 

random effects. The potential problem with GAMs is overfitting, especially if there is un-

modelled residual auto-correlation or unmodelled overdispersion. Careful inspection of 

residuals usually enables detection of these potential problems. 

One important step is to deal with quantities that are wrapped over an interval. 

Specifically, since most sites only have a little over a full year of data available, estimating 

the year-to-year variability is essentially impossible. Instead, we assume that the effects 

are estimated relative to calendar year 2020, and any year-to-year effect needs to be 

incorporated from additional information outside the model. This suggests that the 

response (soil temperature and soil moisture) should be wrapped over the 2020 boundary 

(i.e. the response at the start of 2020 should be the same as the end of 2020). This is 

clearly only an approximation, so the residuals for the model are likely to be biased at the 

start and/or the end of 2020. 

To accommodate the wrapped response, the model is first parameterised so that for each 

year the interval day = [01-Jan, 31-Dec] maps to 𝜃 = [−𝜋, 𝜋] and then sin(𝜃) and cos(𝜃) 

are used as explanatory variables. Similarly, because aspect is wrapped at the 0/360° 

degree boundary, sin((𝜋/180) ⋅ aspect) and cos((𝜋/180) ⋅ aspect) are used as explanatory 

variables. 
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The constraint that the start and end must match is a practical consequence of having 

data limited to about one year, otherwise the asymmetrical start/end of year becomes 

specific to one year and not generic. This way we can at least say that (typically) this is the 

predicted behaviour over a year, and you add an offset for the response in a different year. 

If we had several years of data we would probably introduce a yearly random effect. If we 

had lots of yearly data, we might model the yearly behaviour. 

The topographic explanatory variables slope gradient and aspect were calculated from a 

15 m resolution digital elevation model (DEM) generated by Manaaki Whenua – Landcare 

Research. One could argue that site-measured slope and aspect would be likely to give a 

better regression result, and this seems very likely given that the spatial resolution of field-

estimated slope and aspect would more accurately represent the true slope and aspect 

compared with moderate resolution information from the DEM. However, since the model 

is to be used to predict soil temperature and soil moisture for new locations within each 

site, then the only practical choice is the 15 m DEM. Note that although the original values 

for slope, aspect, and elevation are in degrees and metres, the values are scaled to radians 

and thousands of metres. 

Soil temperature 

We fitted several candidate models to select a final model from. 

1 Model 1. A fixed effect is included for each site, and smooth terms are used for 

sin(𝜃), cos(𝜃), TWI, elevation, slope gradient, sin((𝜋/180) ⋅ aspect), and 

cos((𝜋/180) ⋅ aspect). Importantly, the smooth terms for sin(𝜃) and cos(𝜃) are site-

specific. 

2 Model 2. The terms for the model are the same as for model 1, but the smooth terms 

for sin(𝜃) and cos(𝜃) are independent of the site. Logic would suggest that this model 

would be inferior to model 1. 

3 Model 3. The terms are the same as for model 2, but the smooth terms for aspect 

incorporate interactions with slope. Logic would suggest that this model would 

perform better than model 1. 

4 Model 4. The model is simplified using linear (i.e. non-smooth) terms for TWI and 

elevation, and the interaction between smooth aspect terms and the slope gradient 

are removed, while the smooth term for the slope is retained. Logic would suggest 

that this model would give the worst performance, but would require the fewest 

degrees of freedom. 

5 Model 5. Similar to model 4, but incorporating interactions between 𝜃, slope 

gradient, and slope aspect in the smooths. This last model is of the following form: 

𝑦̂ = 𝛽0 + 𝑓1,𝑖(slope,aspect, sin(𝜃)) + 𝑓2,𝑖(slope,aspect, cos(𝜃)) + 𝛼TWI + 𝛽elevation+ 𝛾𝑖 

where the response 𝑦̂ is the overall mean soil temperature, which includes an overall 

mean 𝛽0, smooth functions 𝑓1,𝑖( ) and 𝑓2,𝑖( ) that are based on topographic slope 

and aspect for each site separately, as well as fixed effects of TWI, elevation, and an 

offset 𝛾𝑖 for site 𝑖. 
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The assessment of the five models is not straightforward due to the complexity of the 

relationships involved, and uses a comparison by way of an ANOVA, comparison of 

coefficient effects, and the overall computational simplicity (i.e. number of degrees of 

freedom). The preferred model is based on a consideration of quantitative measures, but 

also depends on interpretability, which is somewhat difficult to capture. 

For spatial prediction we coarsened the 15 m grid to 30 m for computational expediency. 

We then used the preferred model to spatially predict the daily soil temperature onto the 

30 m grid that covered each WSN site for one full year. 

Soil moisture 

The modelling for soil moisture follows a similar procedure to that of soil temperature, 

using a GAM with the same scorpan covariates. Four separate models were fitted, to 

determine the ‘best’ model using a mix of quantitative and qualitative features. The four 

models use the same terms as soil temperature models 1 to 4. We do not include an 

equivalent model 5 here, as preliminary analysis suggested that it was not a useful model 

for soil moisture. 

As for soil temperature, we used the preferred model to spatially predict the daily soil 

moisture content onto the 30 m grid at each WSN site for one full year. 

2.5.2 Yield modelling 

Thermal time function 

In recent years there has been increased interest in increasing farm productivity on New 

Zealand hill country landscapes by introducing legumes such as lucerne (Medicago sativa; 

Mcgowan et al. 2003; Moot 2012; Tozer & Douglas 2016). Farm-scale modelling of forage 

yield has the potential to shed light on the potential productivity of species such as 

lucerne and how it might vary across the farm. Farm-scale mapping of micro-indicators 

may be able to be used as input into yield models. 

We estimated the potential yield of a lucerne crop using a simple thermal time function 

developed by Moot et al. (2021). The function accumulates yield by multiplying the daily 

thermal time with a standardised growth rate (SGR) measured in units of kilograms of dry 

matter per hectare per degree-day (kg DM/ha/°Cd). The rate of dry matter production 

changes during the growing season, associated with a change in biomass partitioning to 

recharge root reserves after the summer solstice (21 December). For increasing 

photoperiods (days where day length is increasing; 1 July – 31 December), the SGR is at 

9.68 ± 0.26 kg DM/ha/°Cd from 181 to 1,500°Cd, whereas in decreasing photoperiods (day 

length is shortening; 1 January – 30 June) the SGR is lower (5.40 ± 0.76 kg DM/ha/°Cd). 

The full function is: 
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𝑦 =

{
 
 

 
 

∑ 𝑟1

𝑖=31 Dec.

𝑖=𝐷start

⋅ Tt𝑖

∑ 𝑟2

𝑖=30 Jun.

𝑖=1 Jan.

⋅ Tt𝑖

 

where the response 𝑦 is the accumulated lucerne yield (t/ha) through an agricultural year 

(1 July to 30 June), 𝑟1 is the SGR for the increasing photoperiod (9.68 kg DM/ha/°Cd), 𝑟2 is 

the SGR for the decreasing photoperiod (5.4 kg DM/ha/°Cd) and Tt𝑖 is the thermal time at 

Day 𝑖. 𝐷start is the date when the accumulated Tt reaches 180°Cd. 

Computation of the daily thermal time is based on methods used by Jones et al. (1986), 

Moot et al. (2001) and Moot et al. (2021). However, instead of estimating the mean daily 

air temperature as the weighted average of eight 3-hourly periods, we use the daily air 

temperature as predicted from the modelled soil temperature, as described in the 

following section. 

The daily thermal time at day 𝑖, Tt𝑖, is estimated from the predicted daily air temperature 

using a broken stick model (Figure 28). Breakpoints in the broken stick model at 1°C, 15°C, 

30°C, and 40°C are cardinal temperatures that relate to important growth thresholds for 

lucerne (Moot et al. 2001, 2021). The first cardinal temperature (1°C) is the base 

temperature below which minimal plant growth occurs. The second cardinal temperature 

(15°C) relates to the initial rate of thermal time accumulation required for lucerne growth 

in temperate climates. The third cardinal temperature (30°C) is the optimal temperature 

for growth, and the fourth cardinal temperature (40°C) is the temperature beyond which 

no thermal time is accumulated. 
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Figure 28. Broken stick model, which relates mean daily air temperature to daily thermal time 

for lucerne. 

 

The yield model requires information about soil moisture expressed in millimetres of 

water, which is problematic because the sensor nodes measure volumetric soil moisture. 

One cannot convert from volumetric moisture to millimetres of water without knowing the 

thickness of the soil horizon or horizons across which the volumetric measurement 

applies. We did not collect that information at the sensor nodes, so for the yield model we 

assumed that soil moisture was not limiting. 

Estimating air temperature from soil temperature 

The sensor nodes do not record air temperature, 𝑇air, so we must predict it using soil 

temperature. This, too, is problematic, not least because of the lag effect caused by the 

thermal mass of the soil (Zheng et al. 1993). Here we made use of weather stations that 

report both air temperature and soil temperature to NIWA’s National Climate Database.7 

We used weather stations located in the same regions as the WSNs: Canterbury, Hawke’s 

Bay, and Wanganui. 

 

7 cliflo.niwa.co.nz 
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We retrieved 2 years of daily air and soil temperature from NIWA’s National Climate 

Database for 82 weather stations across Canterbury, Hawke’s Bay, and Wanganui that 

measured these variables. The data covered calendar years 2020 and 2021. All weather 

stations recorded air temperature, but not all recorded soil temperature, and not all 

recorded soil temperature at the same set of depths (Table 4). 

Table 4. Number of weather stations available with air temperature and soil temperature at 

specific depths 

Variable 
Number of weather stations 

Canterbury Hawke’s Bay Wanganui 

Air temperature, 𝑇air 33 22 27 

Soil temperature at 5 cm, 𝑇soil,5 2 0 2 

Soil temperature at 10 cm, 𝑇soil,10 23 9 15 

Soil temperature at 20 cm, 𝑇soil,20 14 6 14 

Soil temperature at 30 cm, 𝑇soil,30 4 0 2 

Soil temperature at 50 cm, 𝑇soil,50 11 6 12 

Soil temperature at 100 cm, 𝑇soil,100 12 6 13 

 

Few of the available weather stations, including none at all in Hawke’s Bay, measure soil 

temperature at 30 cm, 𝑇soil,30, the same depth as our sensor nodes. There is clearly an 

insufficient number of weather stations to calibrate reliable relationships between air 

temperature and soil temperature at this depth. Instead, we fitted a relationship between 

the temperature variables at 20 cm depth, 𝑇soil,20 (the closest available depth above 

30 cm), because more weather stations were available, and because we expect the soil–air 

temperature dynamics at 20 cm depth to be closer to those at 30 cm than those at 50 cm 

(the closest available depth below 30 cm). 

For each region we used simple linear regression to model the response of 𝑇air to variation 

in 𝑇soil,20, but we found that this approach underestimated 𝑇air. In the literature, studies 

that quantify relationships between soil and air temperature usually model the response of 

soil temperature to variation in air temperature, rather than treat air temperature as the 

response variable (Toy et al. 1978; Paul et al. 2004; Chudinova et al. 2006; Shati et al. 2018; 

Zhan et al. 2019). When we modified our approach to treat 𝑇soil,20 as the response variable  

the fitted relationships appeared to be more satisfactory. 

The most pragmatic method of predicting 𝑇air from 𝑇soil,20 is to reverse the fitted equation 

for 𝑇soil,20 using basic arithmetic. In doing so we lose information about the errors but the 

approach should be sufficient for this proof of concept. We used the reversed air 

temperature models with the daily spatial predictions of soil temperature to spatially 

predict the daily air temperature across the WSN sites for one full year. 
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3 Results 

3.1 Wireless sensor networks 

3.1.1 Performance 

It is useful to quantify the performance of the WSNs in terms of their resilience, which we 

define here as the ability of a WSN to consistently do what it was designed to do: make 

hourly measurements of soil temperature and soil moisture and report these data back to 

a cloud database via the WSN gateway. Two key components of the overall resilience are 

the resilience of the gateway and the resilience of the sensor nodes. We present results for 

each in turn. 

At the gateway 

The WSN gateways generally performed well. There have, however, been four notable 

outages. 

• The Prices Valley WSN went offline in November 2020 and spontaneously came back 

online in July 2021. 

• The Taihape and Tourere WSNs were offline for short periods (1 to 2 weeks) over 

winter 2021. 

• The Tourere WSN was offline from November 2021 to April 2022. 

• Transmission at Mt Somers began to degrade in late 2021 and the WSN has not 

transmitted regularly since February 2022. 

We deduced that the Prices Valley outage may relate to characteristics of the cellular 

coverage in the area. We suspect the Taihape and Tourere WSN outages in winter 2021 

were related to poor weather conditions and therefore insufficient insolation to keep the 

gateway batteries charged. The Tourere outage over summer 2021/22 appeared to be 

caused by grass growth around the photovoltaic panel causing insufficient insolation at 

the panel to keep the gateway battery charged. 

We inspected the Mt Somers gateway in November 2021 and found that that the cellular 

antenna had been chewed off and removed. Replacement of the antenna did not resolve 

the transmission problems. After further investigation, we learned that the problem was 

due to interference caused by recently installed LoRa transmitters on nearby Spark cell 

towers, which overlap the LoRa radio channel and frequency that we use. In July 2022 we 

updated the software in the Mt Somers gateway to filter out the interference. This restored 

transmission of the sensor telemetry to the cloud database, but we were not able to 

restore communication with six sensor nodes.  

In addition to these longer outages, regular intermittent outages have occurred at Māhia. 

These outages consist of regular 2- to 4-hour outages interspersed by long periods of 

normal hourly data transmission. We think these outages are due to cellular connectivity: 

the Māhia gateway is further from the nearest cell tower than the other WSN gateways. 
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Table 5. Days since installation for each WSN and some metrics of performance 

Site Days since 

installation,  

at 15 March 2022 

Days with no 

hourly records (%) 

Days with at least 1 

hourly record (%) 

Days with 24 

hourly records (%) 

Māhia 543 2.2 97.8 59.3 

Mt Somers 647 6.5 93.5 43.6 

Prices Valley 560 49.5 50.5 22.3 

Taihape 585 3.1 96.9 45.5 

Taumarunui 578 0.0 100.0 38.4 

Tourere 599 30.4 69.6 23.2 

 

We quantified the resilience of the WSNs by analysing the number of gateway 

transmissions recorded by the cloud database. For each WSN we computed three 

variables: 

1. the percentage of days since installation where precisely zero hourly records were 

received by the cloud database, which represents the worst-case situation (poorest 

resilience) and includes the protracted outages and any other day-long outages) 

2. the percentage of days where at least one transmission was received – this metric is 

the complement of metric 1; metrics 1 and 2 sum to 100% 

3. the percentage of days where all 24 expected transmissions were received by the 

cloud database, which represents the best case situation (perfect resilience). 

The length of the period over which these percentages were computed varied according 

to the WSN. The start date of the assessment period was defined as the second day after 

completion of installation, which was different for each WSN, and the end date was 15 

March 2022 (inclusive). The resilience statistics are reported in Table 5. 

Table 5 indicates that the gateway resilience varied considerably between WSNs. The 

Taumarunui, Māhia, and Taihape WSNs had the smallest percentage of days with no 

hourly records received. The Mt Somers WSN also performed very well on this metric. The 

relatively poor scores for the Tourere and Prices Valley WSNs reflect the protracted 

outages there. The Taumarunui WSN is the only WSN that transmitted at least one hourly 

record for every day of operation. 

Gateway resilience as measured by metric 3 was low to moderate, as no WSNs transmitted 

the expected 24 hourly records for every day of operation. This probably reflects daily 

variations in the quality and consistency of the sensor to gateway radio communications 

between sites, but the number also accounts for the protracted outages experienced at 

Prices Valley and Tourere. The Māhia WSN was the best performer, reporting a full set of 

records 59.3% of the time. Figure 29 and Figure 30 explore the number of daily 

transmissions in more detail. Most sites experienced a wide distribution in the number of 

daily transmissions, including more than the expected 24 hourly transmissions. 
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Figure 29. Histograms of the number of WSN gateway transmissions per day. Dashed vertical 

line is the expected number of transmissions per day. 
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Figure 30. Number of gateway transmissions per day over time. Dashed horizontal line is the 

expected number of transmissions per day. 

 

Of the sensor nodes 

Sensor nodes were resilient when they consistently reported hourly soil temperature and 

moisture measurements to the WSN gateway. Over time some nodes stopped reporting 

measurements of soil temperature or soil moisture, or both. We expected some level of 

attrition and were pleased that only a small proportion of sensor nodes were affected 

(Table 6). 

Table 6. Number of sensor node failures at each WSN, at 15 March 2022 

Site Node failures at 15 March 2022 

Māhia 4 

Mt Somers 5 

Prices Valley 2 

Taihape 4 

Taumarunui 3 

Tourere 1 
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Figure 31 explores the idea of sensor node resilience in more detail. For each WSN it 

shows the median number of sensors reporting soil temperature measurements per day, 

computed across all daily records received by the gateway. Sensor node resilience was 

greatest when all 20 sensor nodes consistently reported their measurements. Resilience 

degraded over time as sensors began to fail. In Figure 31, failures are indicated by 

downward steps over time, as exemplified in the Taihape panel, but at most other sites 

(especially Māhia and Mt Somers) noise relating to trouble with gateway transmissions is 

superimposed on the trend. 

 

Figure 31. Median number of sensor nodes reporting soil temperature per day. Dashed 

horizontal line is the expected number of sensor nodes reporting soil temperature per day. 
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3.2 Modelling 

3.2.1 Soil temperature 

Table 7 provides the residual deviance, Akaike’s information criterion (AIC), and the 

proportion of the total deviance explained (𝑅2) for all five soil temperature models. The 

best model has the smallest residual deviance and AIC, and the highest proportion of total 

deviance explained. A naive comparison between the models suggests that model 3 is the 

best since it has the lowest overall residual deviance. The key question is whether, despite 

differences in AIC and residual deviance between models, the ‘best’ model provides any 

relevant improvement over the other models, and whether choosing a more complicated 

model introduces additional problems. 

Table 7. Residual deviance, Akaike’s information criterion, and proportion of the total 

deviance explained for each of the generalised additive models fitted for the soil 

temperature data 

Model Residual deviance AIC R2 

1 121,730 189,555 91.1 

2 127,923 192,029 90.7 

3 102,877 180,951 92.5 

4 129,499 192,643 90.6 

5 108,281 183,831 92.1 

 

Marginal effects plot of model 3 (not shown) appear reasonable, but there were some 

worrying features: 

• the marginal effect for slope was very large compared with the effect of date 

• the marginal effects for the aspect/slope interaction smooth terms were also very 

large. 

Both of the above observations were unexpected, and we concluded that the slope and 

aspect terms were large but cancelling each other (one positive, one negative). This is 

undesirable because it leads to excessive and unrealistic estimates of uncertainty. This is 

an example of over-fitting. 

Figure 32 shows a marginal effects plot of the simplest model for soil temperature (model 

4). In this model, the terms for TWI and elevation are not smoothed, so their interpretation 

is trivial. The size of the marginal effects for all variables is of the same order (the effect 

size for the date is the largest, as expected). The smooth term for slope is somewhat 

unusual (it is non-monotonic), but the overall effect of slope is relatively small compared 

with the other variables, so this is unlikely to be a problem. 
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Figure 32. Plot of the effect of the different explanatory variables for soil temperature, 

model 4. Explanatory variables are given in their natural units. For each panel, the 

explanatory variables that are not changing are held at a fixed value (generally the median or 

a sensible default). The limits of the vertical axis are the same for all panels. The solid line is 

the nominal estimate, while the shaded area (often not visible) is the 95% confidence interval 

of the mean estimate. 

 

A marginal effects plot for model 5, which has significantly better performance than model 

4, is not straightforward because it incorporates a three-way interaction. 

The final model choice is a balance between performance and interpretability. Although 

model 3 gives the best performance, the effect sizes for aspect and slope are not sensible. 

The simplest model is certainly the most easily interpreted, and the penalty for using it 

amounts to a few percentage points in total deviance explained. Therefore, on balance, we 

chose to use the simplest model augmented by interactions with slope and aspect (model 

5) as the basis for soil temperature, and all the subsequent analysis uses this model. 
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Figure 33. Measured versus fitted soil temperature plot for the Mt Somers site using model 5. 

Panel labels indicate the respective sensor node. The dashed red line is the one-to-one line. 

 

Figure 33 shows a measured-versus-fitted plot of soil temperature for the Mt Somers site, 

by sensor node. Plots for the other sites are presented in the Appendix. The Mt Somers 

site was chosen because the sampling from that site covers the longest period of time. 

Most of the plots show close adherence to the 1:1 line, as expected, and as reflected in the 

value for Lin’s concordance correlation coefficient (CCC, Lin 1989) in Table 8. 

Table 8. Statistics for the evaluation of the relationship between measured and predicted soil 

temperature for the chosen soil temperature, model 5 

Site RMSE (°C)a R-sq CCCb Bias (°C) SE (°C)c 

Māhia 1.48 0.88 0.94 0 1.48 

Mt Somers 1.31 0.91 0.95 0 1.31 

Prices Valley 1.60 0.89 0.94 0 1.60 

Taihape 1.52 0.90 0.94 0 1.52 

Taumarunui 1.38 0.91 0.95 0 1.38 

Tourere 1.51 0.87 0.93 0 1.51 

Overall 1.46 0.92 0.96 0 1.46 

aRoot mean squar’d error; bLin's concordance correlation coefficient; cstandard error 
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Figure 34 shows measured (points) and predicted (lines) values of soil temperature for the 

Mt Somers site using model 5. Plots for the other sites are presented in the Appendix. The 

predicted trend shows a maximum soil temperature in late December and a minimum in 

July at most sensor nodes, which is in line with our expectations. 

 

Figure 34. Measured (points) and fitted (line) soil moisture for the Mt Somers site over time, 

using model 1. Panel labels indicate the respective sensor node. 

 

Figures 35 and 36 depict spatial predictions of soil temperature at the Mt Somers site 

when the soils are at their coolest (about 15 July) and warmest (15 January), respectively. 

Figure 37 shows how predictions vary across individual hillslopes on 15 July on the high-

resolution prediction grid. There is little spatial variation in the maps of standard error 

because most of the values are so low. Maps for the other sites are presented in the 

Appendix. Soil temperatures are roughly 5 to 10°C warmer in summer than in winter 

(Figure 38). 
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Figure 35. Predicted soil temperature at Mt Somers on 15 July, when soils are near their 

coolest. 

 

Figure 36. Predicted soil temperature at Mt Somers on 15 January, when soils are near their 

warmest. 
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Figure 37. Predicted soil temperature at Mt Somers on 15 July, showing variation in 

predicted temperature across individual hillslopes. Resolution of the prediction grid is 30 m. 

 

Figure 38. Predicted difference in soil temperature between 15 December and 15 July. 

 

Aspect-related differences in soil temperature 
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With respect to plant growth and development, we are particularly interested in 

understanding potential differences in soil temperature between north- and south-facing 

slopes, including the timing and magnitude of minimum soil temperatures and how 

quickly the soil warms from the minimum in spring. This is because aspect-related 

differences may be meaningful for pasture management if they are large.  
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Table 9. Summary of aspect-related differences in observed minimum soil temperature and 

days taken for soil temperature to reach 10°C and 15°C. Note: Because of gaps in the data, 

values are based on 2020 observations at some sites and 2021 observations at other sites. 

Site Aspect 

Mean 

minimum 

temp. 

Med. min. 

date 

Med. date 

to reach 

10°C 

Med. 

days to 

reach 

10°C 

Med. date 

to reach 

15°C 

Med. 

days to 

reach 

15°C 

Year 

Māhia 
N 7.6 2021-07-15 2021-08-28 19.0 2021-10-27 104.0 2021 

S 6.2 2021-07-15 2021-09-22 64.0 2021-11-19 120.0 2021 

Mt Somers 
N 1.1 2020-07-25 2020-11-04 102.0 2020-12-29 138.0 2020 

S -0.3 2020-07-25 2020-12-16 144.0   2020 

Prices Valley 
N 3.5 2021-08-09 2021-10-01 53.5 2021-11-08 91.0 2021 

S -0.2 2021-07-13 2021-11-09 118.0 2021-12-24 164.5 2021 

Taihape 
N 3.6 2021-07-27 2021-10-25 88.0 2021-11-30 125.5 2021 

S 0.7 2021-07-06 2021-10-27 111.0 2021-12-09 142.0 2021 

Taumarunui 
N 6.6 2021-07-13 2021-09-10 53.0 2021-11-01 105.5 2021 

S 4.5 2021-07-14 2021-10-05 83.0 2021-11-10 119.5 2021 

Tourere 
N 6.7 2020-07-27 2020-10-05 70.0 2020-10-25 90.0 2020 

S 5.2 2020-07-27 2020-09-26 61.0 2020-12-08 134.0 2020 

 

The sensor data indicate that minimum values of the median daily soil temperatures do 

vary between north- and south-facing slopes and also by site (Table 9). Values were 

computed as the mean of the nodes on the respective aspects. On south-facing sites, the 

minimum daily soil temperature ranged from –0.3°C (Mt Somers) to 6.2°C (Māhia). On 

north-facing sites, the minimum daily soil temperature ranged from 1.1°C (Mt Somers) to 

7.6°C (Māhia). Within sites, the difference in the mean of the minimum daily soil 

temperatures between north- and south-facing slopes ranged from 1.36°C (Mt Somers) to 

3.7°C (Prices Valley). 

Soils warmed at different rates depending on aspect, as quantified by the number of days 

taken to reach two arbitrary temperature thresholds (10°C and 15°C) from the minimum 

temperature (Table 9). As expected, north-facing slopes warmed faster than south-facing 

slopes at all sites, except to 10°C at Tourere. On north-facing slopes, the median number 

of days taken to reach 10°C ranged from 19 at Māhia (28 August) to 102 at Mt Somers 

(4 November). On south-facing slopes, the number of days to reach 10°C ranged from 61 

at Tourere (26 September) to 144 at Mt Somers (16 December). Soils at the inland, higher-

elevation sites generally took longer to warm than sites closer to the coast. 

Table 10 summarises the difference in warming rates between north- and south-facing 

slopes at each site. For example at Taihape, soils on north-facing slopes reached a 

temperature of 10°C 23 days sooner than south-facing slopes. At the other extreme, 

north-facing soils at Prices Valley reached 10°C 64.5 days sooner than south-facing soils. 

We suspect the negative value for 10°C at Tourere, indicating south-facing soils warmed 

faster than north-facing soils, is an anomaly due to the small sample size on each aspect. 
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Table 10. Difference in number of days for soil on north- and south-facing slopes to reach 

10°C and 15°C. Positive values indicate north-facing soils reached the temperature threshold 

sooner. 

Site Diff. in time to reach 10°C 

(days) 

Diff. in time to reach 15°C 

(days) 

Māhia 45.0 16.0 

Mt Somers 42.0  

Prices Valley 64.5 73.5 

Taihape 23.0 16.5 

Taumarunui 30.0 14.0 

Tourere -9.0 44.0 

 

3.2.2 Soil moisture 

The procedure for selecting a soil moisture model follows the approach we used for soil 

temperature. Table 11 provides the residual deviance, Akaike’s information criterion (AIC), 

and the proportion of the total deviance explained (𝑅2) for all models. A naive comparison 

suggests that model 3 is the best because it has the best figures for all three model 

metrics. 

Table 11. Residual deviance, Akaike’s information criterion, and proportion of the total 

deviance explained for each of the generalised additive models fitted for the soil moisture 

data 

Model Residual deviance AIC R2 

1 1,654 47,764 56.3 

2 1,781 47,663 53.1 

3 1,584 46,798 58.7 

4 1,781 47,641 53.1 

 

A marginal effect plot for model 3 (not shown) indicates regions where the aspect and 

slope interaction cannot be estimated. This would probably cause problems in prediction 

for the wider study area, because they would inevitably include combinations of slope and 

aspect not covered by the training data. Figure 41 shows the marginal effects of the 

somewhat simpler soil moisture model 1. 

The final model choice is a balance between performance and interpretability. Although 

model 3 gives the best performance, the interaction between aspect and slope is poorly 

characterised in the training data. The simplest model is certainly the most easily 

interpreted, but there is a reasonably large difference in the percentage of deviance 

explained between this model and the optimal model. On balance, we chose to use model 

1 as the basis for soil moisture because it gives almost the same percentage of deviance as 

the optimal model, although it is somewhat more complicated. All the subsequent analysis 

uses this model. 
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Figure 39. Measured versus fitted soil moisture plot for the Mt Somers site using model 1. 

Panel labels indicate the respective sensor node. The dashed red line is the 1:1 line. 

 

Figure 39 shows a measured-versus-fitted plot of soil temperature for the Mt Somers site, 

by sensor node. Plots for the other sites are presented in the Appendix. The CCC indicates 

that the conformance to the 1:1 line is overall very poor (Table 12), especially when 

compared to soil temperature (Figure 33 and Table 8), but is still reasonable for certain 

sensor nodes (e.g. node 1). Measured-versus-fitted plots for the other sites are presented 

in the Appendix. 

Table 12. Statistics for the evaluation of the relationship between measured and predicted 

soil moisture for soil moisture model 1 

Site RMSE (%)a R-sq CCCb Bias (%) SE (%)c 

Māhia 37.08 0.33 0.00 -34.50 37.08 

Mt Somers 38.42 0.30 0.00 -37.41 38.42 

Prices Valley 39.95 0.31 0.00 -38.33 39.96 

Taihape 35.62 0.64 0.01 -34.00 35.62 

Taumarunui 48.92 0.47 0.00 -47.51 48.92 

Tourere 30.74 0.55 0.01 -29.37 30.75 

Overall 39.20 0.56 0.01 -37.14 39.21 

aRoot mean squared error; bLin's concordance correlation coefficient; cstandard error 
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Figure 40. Measured (points) versus fitted (line) soil moisture for the Mt Somers site over 

time, using model 1. Panel labels indicate the respective sensor node. 

 

Figure 40 shows measured (points) and predicted (lines) values of soil moisture for the 

Mt Somers site using model 1. Plots for the other sites are presented in the Appendix. 

Figure 40 shows one clear reason why the conformance between the data and the model 

are poor: the model is forced to wrap at the 1 January/31 December boundary, whereas 

the data obviously cannot enforce this behaviour. Nevertheless, the predicted trend shows 

the highest soil moisture towards the middle of the year and the lowest in late summer, as 

expected. Measured-versus-fitted plots for the other sites are presented in the Appendix. 
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Figure 41. Plot of the effect of the different explanatory variables for soil moisture model 1. 

Explanatory variables are given in their natural units. For each panel, the explanatory 

variables that are not changing are held at a fixed value (generally the median or a sensible 

default). The vertical axis is the same for all panels. The solid line represents the mean 

estimate, while the shaded area represents the 95% confidence interval of the mean 

estimate. 

 

Figure 42 and Figure 43 depict spatial predictions of soil moisture at the Mt Somers site 

when the soils are assumed to be close to wilting point (about 1 March, based on the 

modelled trend in Figure 40) and field capacity (25 June), respectively. Figure 44 shows 

how predictions vary across individual hillslopes on 25 June on the high-resolution 

prediction grid. Maps for the other sites are presented in the Appendix. 
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Figure 42. Predicted soil moisture at Mt Somers on 1 March, when soils are near their driest. 

 

Figure 43. Predicted soil moisture at Mt Somers on 25 June, when soils are near their wettest. 
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Figure 44. Predicted soil moisture at Mt Somers on 15 July, showing variation in predicted 

moisture across individual hillslopes. Resolution of the prediction grid is 30 m. 

3.2.3 Yield modelling 

Air temperature calibration 

Canterbury weather stations 

The fitted equation for prediction of 𝑇soil,20 from 𝑇air at Canterbury weather stations is 

𝑇soil,20 = 0.846𝑇air + 1.8 

The fitted relationship has an 𝑅2 of 0.74 (Figure 45). The reversed equation for predicting 

𝑇air from 𝑇soil,20 is 

𝑇air = 1.182𝑇soil,20 − 2.128 
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Figure 45. Relationship between air temperature and 20 cm soil temperature measured at 

Canterbury weather stations. Dashed line is the 1:1 line and solid line is the line of best fit. 
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Hawke’s Bay weather stations 

The fitted equation for prediction of 𝑇soil,20 from 𝑇air at Hawke’s Bay weather stations is 

𝑇soil,20 = 0.911𝑇air + 1.847 

The fitted relationship has an 𝑅2 of 0.77 (Figure 46). The reversed equation for predicting 

𝑇air from 𝑇soil,20 is 

𝑇air = 1.098𝑇soil,20 − 2.027 

 

Figure 46. Relationship between air temperature and 20 cm soil temperature measured at 

Hawke’s Bay weather stations. Dashed line is the 1:1 line and solid line is the line of best fit. 
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Wanganui weather stations 

The fitted equation for prediction of 𝑇soil,20 from 𝑇air at Wanganui weather stations is 

𝑇soil,20 = 0.896𝑇air + 2.233 

The fitted relationship has an 𝑅2 of 0.80 (Figure 47). The reversed equation for predicting 

𝑇air from 𝑇soil,20 is 

𝑇air = 1.116𝑇soil,20 − 2.492 

 

Figure 47. Relationship between air temperature and 20 cm soil temperature measured at 

Wanganui weather stations. Dashed line is the 1:1 line and solid line is the line of best fit. 
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Yield prediction 

Figure 48 depicts the annual predicted lucerne yield at Mt Somers. Figure 49 shows how 

predictions vary across individual hillslopes on the high-resolution prediction grid.  The 

yield decreases with elevation and tends to be greater on north- and west-facing slopes. 

Maps for the other sites are found in the Appendix. 

 

Figure 48. Predicted annual lucerne yield at Mt Somers for 2020. 

 



 

- 60 - 

 
Figure 49. Predicted annual lucerne yield for Mt Somers for 2020, showing variation in 

predicted yield across individual hillslopes. Resolution of the prediction grid is 30 m. 
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4 Discussion 

4.1 Wireless sensor networks 

Overall the wireless sensor networks (WSNs) performed fairly well. We expected some 

level of attrition of sensor nodes, but fortunately never more than a quarter of nodes at a 

given site failed. The most frequent cause of failure was water vapour ingress into the 

above-ground enclosure that contains the electronics; when this happened, the 

accumulation of moisture over time was eventually sufficient to cause a short circuit and 

destroy the electronics. Water vapour was able to get into the enclosure through an 

imperfect seal in the lid of the enclosure, which we had not anticipated. We were able to 

get the water-damaged sensor nodes back up and running by replacing their electronics. 

We noted that some WSN gateways occasionally transmitted more than the expected 24 

hourly records per day (Figure 29 and Figure 30). The reason for this is as follows. After a 

sensor node sends data to the gateway it expects an acknowledgement message from the 

gateway. If the node does not receive the acknowledgement message it will try twice more 

to send the data. Sometimes the gateway receives the node’s data and forwards it to the 

cloud database, but the node does not receive the acknowledgement message so it tries 

again. The node may not receive the acknowledgement message because radio 

communication from the gateway to the node is not always as good as communication 

from the node to the gateway (section 1.4). 

Figure 29 indicates that duplicate records were transmitted by all WSNs, but especially by 

the Māhia and Mt Somers WSNs. The other WSNs transmitted fewer than 10 duplicate 

records each. Figure 30 indicates that the temporal distribution of duplicate records was 

not uniform. Low numbers of duplicate records were transmitted by the Māhia WSN until 

July 2021, after which time the number of duplicate records greatly increased. At 

Mt Somers low numbers of duplicate records were transmitted frequently, but only until 

May 2021. 

At Māhia, duplicate records would often contain data for only one or two sensor nodes. 

The sensor nodes were often, but not always, nodes located further from the gateway or in 

relatively sheltered parts of the landscape, where one might expect radio communication 

with the gateway to be poorer quality. At Mt Somers, duplicate records usually contained 

data for all sensor nodes, which suggests a different root cause. 

4.2 Soil temperature 

The marginal effects plot for the soil temperature model (Figure 32) indicates that day of 

year has the largest effect on soil temperature at Mt Somers, as we might expect, followed 

by elevation and aspect. TWI did not appear to have an appreciable effect on soil 

temperature. As expected, soil temperature decreased as elevation increased. The effects 

of day of year, slope, and aspect are difficult to interpret individually due to the three-way 

interaction between them in model 5. Nevertheless the effects plot indicates that the 

lowest soil temperatures at Mt Somers occur around day of year 200 (18 July), and that the 

warmest temperatures should be found around day 20 (20 January), which is broadly 
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consistent with the sensor data. The effects plot also indicates that the coolest 

temperatures occur on broadly south-facing slopes, which is what we would expect 

(Gillingham & Bell 1977; Sheath & Boom 1985). 

We are pleased with the performance of the soil temperature model. The percentage of 

deviance explained by the predictors is high (Table 7) and the relationship between the 

measured and fitted data (Figure 33) adheres closely to the 1:1 line (Table 8). The 

prediction uncertainty, as quantified by the standard error, is very low. 

Direct comparison of our soil temperature model with others in the literature is difficult 

because of the diversity of approaches used and landscapes modelled. Despite this we are 

heartened that our soil temperature model performs about as well as other daily soil 

temperature models, as assessed by the usual metrics of performance (e.g. Zheng et al. 

1993; Horton & Corkrey 2011; Tabari et al. 2011; Xing et al. 2018; Mehdizadeh et al. 2020). 

Due to the interaction of day of year with slope gradient and slope aspect in the model, 

the difference in predicted soil temperature between the warmest and coolest parts of the 

year was allowed to vary spatially (Figure 38). This intra-annual difference was greatest on 

relatively flat slopes and smallest on west-facing slopes. The difference tended to be larger 

on east- and north-facing slopes than on south- and west-facing slopes and was up to 

27°C on relatively flat slopes. The size of the predicted difference on flat slopes seems 

implausible and may represent extrapolation due to undersampling of flat landscapes in 

our data set. We note, though, that some of the National Climate Database weather 

stations in Canterbury occasionally report soil temperatures in the order of 22°C, so it may 

be possible to attain annual warm–cool differences in the order of 20°C, especially in 

extreme years. 

The median date at which the minimum soil temperature was experienced did not differ 

between north- and south-facing aspects by more than 1 day at most sites (Table 9), with 

the exception of Taihape and Prices Valley, where north-facing slopes experienced 

minimum soil temperatures up to 27 days later than south-facing slopes. Between sites, 

we could not discern a latitudinal trend in the median date of the minimum soil 

temperature. The median date was generally in mid to late July, except for north-facing 

slopes at Prices Valley (early August). 

It was also difficult to discern meaningful relationships between the differences in the 

rates of warming to 10°C and to 15°C (Table 10). Data from Māhia, Taihape, and 

Taumarunui suggest that between north- and south-facing slopes the difference in time 

taken to reach 15°C is smaller than the difference in time taken to reach 10°C, but the data 

from Prices Valley and Tourere are inconsistent with this behaviour. At Mt Somers, no 

south-facing slopes recorded a median daily soil temperature of 15°C. 

There is scope for future work. In time, given additional data, we can begin to assess the 

inter-annual variability in soil temperature. With sufficient length of the soil temperature 

record it may be possible to avoid wrapping the model at year end and even explore 

forecasting soil temperature in the near term. 

The primary objective of this study is to determine whether we can map micro-indicators 

such as soil temperature at the farm scale. In light of the performance of the model (Table 
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7), the plausibility of the modelled soil–landscape relationships found by the model 

(Figure 32), and the quality of the predictions as judged by the evaluation on the sensor 

node data (Table 8), we are confident that soil temperature can be mapped at the farm 

scale. 

4.3 Soil moisture 

Day of year, aspect, and elevation had the largest effect on the modelled soil moisture, 

followed by slope gradient (Figure 41). Once again TWI had a negligible effect. The other 

effects were generally as expected. 

Predicted soil moisture was higher in the second half of the year than in the first half of 

the year, presumably due to recharge from autumn and winter rain. Soil moisture 

predictions tended to be higher on broadly south-facing slopes and lower on broadly 

north-facing slopes, although the effect of aspect did not vary smoothly from north to 

south. The smoothness of the curve could be improved by using a GAM with a smaller 

number of knots. 

As elevation increases it apparently has a positive effect on soil moisture (Figure 41). This 

is interesting, but possibly unremarkable. There is uncertainty in the literature about the 

degree to which soil moisture gradients at the hillslope scale are controlled by topography 

versus soil characteristics. There is evidence to suggest that in some landscapes, the main 

driver could be either factor depending on season or drought status (e.g. Grayson et al. 

2002; Western et al. 1999; Yeakley et al. 1998). As slope gradient increases it has a 

negative effect on soil moisture, possibly due to the greater propensity for surface runoff 

on steeper slopes. 

The performance of the soil moisture model was mediocre (Table 11, Figure 39, and Table 

12), and the uncertainty associated with the predictions is large and often exceeded the 

predicted soil moisture values themselves. Taken together, these problems cast doubt on 

the usefulness of the predicted soil moisture values as input for agronomic models. 

Figure 40 shows one clear reason why the conformance between the data and the model 

are poor: the model is forced to wrap at the 1 January/31 December boundary, whereas 

the data obviously cannot enforce this behaviour. In hindsight it may be better to wrap the 

model at the 30 June/1 July boundary, because the inter-annual variability in soil moisture 

may be smaller in winter than in summer. 

Despite these shortcomings, the predicted trend shows the highest soil moisture towards 

the middle of the year and the lowest in late summer, as expected. It is possible to detect 

when the soil is assumed to be near field capacity and when it is close to wilting point 

(Figure 50), which suggests the predicted trend could be used to monitor moisture stress. 
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Figure 50. Measured (points) and predicted (line) soil moisture for sensor 8 at Mt Somers. 

Annotations indicate where soil moisture is assumed to be near field capacity and wilting 

point. 

The expected pattern of wetter soils on south-facing slopes and drier soils on north-facing 

slopes is demonstrated in the sensor node data, except at Māhia, where north-facing soils 

were consistently wetter throughout the year, regardless of season (e.g. summer versus 

winter) or relative moisture conditions (e.g. wetter versus drier periods), as indicated in 

Table 13. We are not sure how to explain this, considering aspect-related differences in 

soil temperature at the nodes were as expected. We assume the reason is geographical, 

potentially because the site was located on the flatter part of the Māhia Peninsula, where 

the effect of aspect was not as strongly expressed, or perhaps due to its location on a 

marine peninsula with respect to prevailing weather.  
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Table 13. Differences in observed moisture at north- and south-facing sensor nodes, 

expressed as the average of the daily median on the dates indicated of sensor nodes on the 

indicated aspects. Data were not available for two dates at Prices Valley. 

Site 
Aspect 

1 January 2021 

moisture (%)a 

2 March 2021 

moisture (%)b 

1 August 2021 

moisture (%)c 

Māhia N 35.2 27.7 42.9 

S 16.1 12.8 35.2 

Mt Somers N 33.0 24.7 38.8 

S 36.9 40.1 49.1 

Prices Valley N   41.8 

S   49.8 

Taihape N 27.3 15.4 34.8 

S 34.6 22.9 47.6 

Taumarunui N 40.7 27.4 42.3 

S 49.3 38.4 55.2 

Tourere N 18.5 16.1 30.4 

S 26.5 16.9 33.5 

aSummer; bdrier; cwinter, wetter 

 

The primary objective of this study is to determine whether we can map micro-indicators 

such as soil moisture at the farm scale. We can map soil moisture at the farm scale, but 

our work highlighted the difference in predictability between soil temperature and soil 

moisture. Soil moisture appears to be much less predictable than soil temperature, due in 

part to the erratic timing and magnitude of rainfall events. It probably also depends on the 

nature of the spatial variability of soil moisture at the farm scale, which we presume is 

driven by soil and topographic factors, and on the relative nature of the moisture 

measurements from our sensors. This is all reflected in the mediocre performance of the 

fitted soil moisture model. We think the performance of the model can be improved by 

collecting additional data (especially in the parts of the year where gaps in the record 

currently exist), adding additional sensors at strategic locations (e.g. on undersampled 

landscape positions), or by modifying the structure of the model (e.g. by formally handling 

temporal auto-correlation in soil moisture). 

4.4 Yield modelling 

To meet the data requirements of the yield model we had to make some pragmatic 

decisions about how to work with the limitations imposed by the characteristics of our 

farm-scale soil temperature and moisture data. The clear trade-off is that the yield 

modelling is not as robust as it would have been had the modelled soil data been more 

suitable. It is obvious, in hindsight, that the sensor nodes should have been equipped with 

air temperature sensors, which would have avoided the problematic conversion of soil 

temperature to air temperature. 
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Furthermore, notwithstanding the quality of the soil moisture model, it is clear now that 

we should have collected information about soil horizons when the sensor nodes were 

installed, which would allow us to convert volumetric moisture to millimetres of water for 

use in the yield model. This would have required the inclusion of a pedologist in the field 

parties, which at the time was judged more than project resources could accommodate. 

It is likely that the model overestimates the lucerne yield. Contributing factors include the 

quality of the air temperature estimates, the assumption of unlimited water available to 

the crop, and the accuracy of the standardised growth rates used in the yield model. We 

think that the assumption of unlimited water is probably the most important, as we would 

usually expect periods of moisture stress throughout the year. This is reflected in the 

annual soil moisture trend (refer to Figure 40 and Figure 50). The issues associated with 

the air temperature estimation are also probably important. 

In spite of the limitations described above, our proof of concept shows that we can use 

micro-indicators to map pasture yield at the farm scale. By implication, the micro-

indicators should also be able to be used as input to other types of models that require 

soil information. We have learned a lot during this study and have identified several 

factors that, if remediated, we are confident would lead to much more robust estimates of 

pasture. 

5 Summary and conclusions 

Taking into account the limitations discussed in the report, we are confident that we have 

achieved the primary and secondary objectives, as set out in section 1.4. The farm-scale 

soil monitoring and mapping system we developed has shed light on the spatial variability 

of two key soil properties at the six sites at a resolution that is not possible using 

contemporary, widely available sources of data, such as from the VCSN and the SMAP and 

SMOS remote sensing missions. We also demonstrated that the farm-scale soil 

information can be built upon to produce other agronomically relevant layers of 

information.  

The study has three key outputs: 

1 a spatial database of measurements of soil temperature and soil moisture, updated in 

near real time, for the 120 sensor nodes 

2 fitted soil–landscape models for soil temperature and soil moisture, and models for 

translating between soil temperature and air temperature 

3 for each site, daily farm-scale maps of soil temperature, soil moisture, and lucerne 

yield for 1 year. 

5.1 Recommendations 

We recommend that the WSNs continue to operate. The availability of farm-scale 

information on micro-indicators in diverse hill country landscapes across New Zealand is 

critical to inform models that predict pasture production, especially in light of pressures 
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such as policy changes that affect land use, and global factors such as climate change 

(Mills et al. 2021). 

More data, especially for the parts of the year where data are missing (e.g. over winter at 

Tourere, or over summer at Prices Valley), should improve the quality of our soil 

temperature and moisture models. With a greater length of record we should also be able 

to assess the potential inter-annual variability in soil temperature and moisture at the farm 

scale. 

We recommend the sensor nodes be fitted with air temperature sensors according to 

meteorological standards, which would complement the existing sensor package, allow for 

greater understanding of soil–air temperature dynamics on sloping land, and provide a 

broader platform of farm-scale information to feed into agronomic models. 

We recommend the collection of additional pedological information at the sensor nodes, 

especially the depths of soil horizon boundaries, which should enable us to convert 

volumetric soil moisture to soil moisture in millimetres, as required for the yield model. 

5.2 Future work 

There are a number of opportunities for future work, with respect to both the soil 

monitoring systems themselves and the bigger picture regarding how they might fit into 

hill-country farming systems. 

5.2.1 Soil monitoring systems 

It is worth further exploring how well the locations of the sensor nodes represent hill-

country landscapes at the study sites. Evidence from the soil moisture modelling indicated 

that we may not have adequately sampled some combinations of slope and aspect. Also, 

because we prioritised accessibility (e.g. proximity to farm tracks) in the specification of 

the sampling domain at each site, it is possible that the sampling domains were biased 

away from certain types of landscape. For example, we suspect that at some sites, 

locations that have strong slopes, and therefore strong expression of aspect-related 

effects, may not be adequately represented. Further analysis is required to assess the 

extent to which this is true. It may be worth adding a small number of additional sensor 

nodes across the six sites at strategic, data-driven locations to assess the extent to which 

they improve the modelling (Carré et al. 2007b). 

Adding additional sensing instruments to the sensor nodes would increase the breadth of 

soil properties that could be monitored. We have already presented a case for measuring 

air temperature. Soil pH is another candidate because of its importance as a regulator of 

nutrient availability and soil microbial composition (Wakelin et al. 2013). The measurement 

of other properties, especially with novel sensors, may also be relevant in certain 

landscapes. For example, redox sensors (Farrell et al. 1991) may be informative in wetter 

landscapes; nitrate sensors (Birrell & Hummel 2000; Ali et al. 2019) would give insight into 

nitrogen movement in the soil profile. 
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Future work could include adding additional sensors at a shallower depth in the soil 

profile, such as 20 cm, to be more consistent with NIWA’s National Climate Database. 

5.2.2 Hill country farming systems 

We have not explored how soil monitoring systems like the one we developed can fit into 

hill-country farming systems. We do not presume that the farm-scale maps of soil 

properties in the format we present here are by themselves the most useful tool for 

farmers. Rather we think they are the essential building blocks of additional information 

layers, information systems, and decision-support tools that farmers can use to their fullest 

potential.  

The provision of information layers is an example of digital soil assessment (Carré et al. 

2007a; Kidd et al. 2015). In New Zealand hill country, we suspect that tools that help fine-

tune the spatial and temporal qualities of decision-making on strongly contrasting 

hillslopes is a vein worth tapping. But ultimately the development of the systems 

themselves (e.g. what a useful tool looks like, which information layers are relevant) should 

involve, and be informed by, the lived experience of farmers and other agricultural 

professionals. 

Ultimately we think the success of these systems depends on involving the farming 

community, and not just at the individual farm level. We can envisage soil monitoring 

systems rolled out in a cooperative fashion across groups of farms in a catchment or even 

wider regional scales, perhaps by employing a citizen science model where farmers receive 

support, tools, and other information products in exchange for deploying a handful of 

sensor nodes at strategic locations on their farm. Key issues that would need to be 

resolved include the number and placement of network gateways in order to minimise the 

cost of cellular service, and the number of sensor nodes per farm required to achieve 

modelling of adequate quality. 

6 Acknowledgements 

The authors would like to acknowledge members of the field team and others who 

provided invaluable technical support to the programme: Harley Betts, Ben Jolly, Kishor 

Kumar, Paul Peterson, Balin Robertson, and Anthony Ward. 

We acknowledge the owners of the land on which our sensor networks are located. We 

are grateful for their support of the project, their willingness to allow us access, and their 

assistance in troubleshooting. 

Funding for this project was provided by Beef + Lamb New Zealand, the Ministry of 

Business, Innovation and Employment, Seed Force New Zealand, and PGG Wrightson 

Seeds, as part of the Hill Country Futures research programme (BLNZT1701).  



 

- 69 - 

7 Intellectual property 

Table 14. New intellectual property created during this study. 

Contributor Intellectual property Owner 

MWLR Soil temperature and moisture models and associated data B+LNZ 

MWLR Soil–air temperature models B+LNZ 

MWLR Yield model predictions B+LNZ 

MWLR Embedded software in wireless sensor network components B+LNZ 
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Appendix – maps and charts for Māhia, Prices Valley, Taihape, 

Taumarunui and Tourere 

Māhia 

Sampling 

 

Figure A1. Location of sampling domain, WSN gateway, and sensor nodes at Māhia. 
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Scorpan covariates 

 

Figure A2. Elevation at Māhia. 

 

Figure A3. Slope at Māhia. 
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Figure A4. Aspect at Māhia. 

 

 

Figure A5. Topographic wetness index at Māhia. 
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Figure A6. Elasp at Māhia. 

Soil temperature 

 

Figure A7. Daily median soil temperature data for the Māhia WSN after trimming of the start 

and end dates, and removal of low and high temperatures, and periods of no change in soil 

temperature. Panel labels indicate the respective sensor node. Points that were removed as a 

result of the data trimming are shown in orange, while presumed valid points are in black. 
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Figure A8. Measured versus fitted soil temperature plot for the Māhia site using model 5. 

Panel labels indicate the respective sensor node. 

 

 

Figure A9. Measured (points) versus fitted (line) soil temperature for the Māhia site over 

time, using model 5. Panel labels indicate the respective sensor node. 
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Figure A10. Predicted soil temperature at Māhia on 15 January, when soils are near their 

warmest. 

 
Figure A11. Predicted soil temperature at Māhia on 15 July, when soils are near their coolest. 
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Soil moisture 

 

Figure A12. Daily median soil moisture data for the Māhia site after trimming of the start and 

end dates, and removal of low and high soil moisture values, and periods of no change in soil 

moisture. Panel labels indicate the respective sensor node. Points excised from the data have 

been coloured orange. 

 

Figure A13. Measured versus fitted soil moisture plot for the Māhia site using model 1. Panel 

labels indicate the respective sensor node. 
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Figure A14. Measured (points) versus fitted (line) soil moisture for the Māhia site over time, 

using model 1. Panel labels indicate the respective sensor node. 

 

 

Figure A15. Predicted soil moisture at Māhia on 1 March, when soils are near their driest. 
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Figure A16. Predicted soil moisture at Māhia on 25 June, when soils are near their wettest. 

Yield 

 
Figure A17. Predicted annual lucerne yield at Māhia for 2020. 
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Prices Valley 

Sampling 

 

Figure A18. Location of sampling domain, WSN gateway, and sensor nodes at Prices Valley. 

 

Scorpan covariates 

 

Figure A19. Elevation at Prices Valley. 
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Figure A20. Slope at Prices Valley. 

 

 

Figure A21. Aspect at Prices Valley. 
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Figure A22. Topographic wetness index at Prices Valley. 

 

 

Figure A23. Elasp at Prices Valley. 
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Soil temperature 

 

Figure A24. Daily median soil temperature data for the Prices Valley WSN after trimming of 

the start and end dates, and removal of low and high temperatures, and periods of no 

change in soil temperature. Panel labels indicate the respective sensor node. Points that were 

removed as a result of the data trimming are shown in orange, while presumed valid points 

are in black.  
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Figure A25. Measured versus fitted soil temperature plot for the Prices Valley site using 

model 5. Panel labels indicate the respective sensor node. 

 

 

Figure A26. Measured (points) versus fitted (line) soil temperature for the Prices Valley site 

over time, using model 5. Panel labels indicate the respective sensor node. 



 

- 89 - 

 
Figure A27. Predicted soil temperature at Prices Valley on 15 January, when soils are near 

their warmest. 

 
Figure A28. Predicted soil temperature at Prices Valley on 15 July, when soils are near their 

coolest. 
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Soil moisture 

 

Figure A29. Daily median soil moisture data for the Prices Valley site after trimming of the 

start and end dates, and removal of low and high soil moisture values, and periods of no 

change in soil moisture. Panel labels indicate the respective sensor node. Points excised from 

the data have been coloured orange. 

 

Figure A30. Measured versus fitted soil moisture plot for the Prices Valley site using model 1. 

Panel labels indicate the respective sensor node. 
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Figure A31. Measured (points) versus fitted (line) soil moisture for the Prices Valley site over 

time, using model 1. Panel labels indicate the respective sensor node. 

 

Figure A32. Predicted soil moisture at Prices Valley on 1 March, when soils are near their 

driest. 
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Figure A33. Predicted soil moisture at Prices Valley on 25 June, when soils are near their 

wettest. 

Yield 

 

Figure A34. Predicted annual lucerne yield at Prices Valley for 2020. 
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Taihape 

Sampling 

 
Figure A35. Location of sampling domain, WSN gateway, and sensor nodes at Taihape. 

 

Scorpan covariates 

 
Figure A36. Elevation at Taihape. 
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Figure A37. Slope at Taihape. 

 

 

Figure A38. Aspect at Taihape. 
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Figure A39. Topographic wetness index at Taihape. 

 

 

Figure A40. Elasp at Taihape. 
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Soil temperature 

 

Figure A41. Daily median soil temperature data for the Taihape WSN after trimming of the 

start and end dates, and removal of low and high temperatures, and periods of no change in 

soil temperature. Panel labels indicate the respective sensor node. Points that were removed 

as a result of the data trimming are shown in orange, while presumed valid points are in 

black.  
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Figure A42. Measured versus fitted soil temperature plot for the Taihape site using model 5. 

Panel labels indicate the respective sensor node. 

 

 

Figure A43. Measured (points) versus fitted (line) soil temperature for the Taihape site over 

time, using model 5. Panel labels indicate the respective sensor node. 
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Figure A44. Predicted soil temperature at Taihape on 15 January, when soils are near their 

warmest. 

 
Figure A45. Predicted soil temperature at Taihape on 15 July, when soils are near their 

coolest. 
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Soil moisture 

 

Figure A46. Daily median soil moisture data for the Taihape site after trimming of the start 

and end dates, and removal of low and high soil moisture values, and periods of no change 

in soil moisture. Panel labels indicate the respective sensor node. Points excised from the 

data have been coloured orange. 

 

Figure A47. Measured versus fitted soil moisture plot for the Taihape site using model 1. 

Panel labels indicate the respective sensor node. 
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Figure A48. Measured (points) versus fitted (line) soil moisture for the Taihape site over time, 

using model 1. Panel labels indicate the respective sensor node. 

 

Figure A49. Predicted soil moisture at Taihape on 1 March, when soils are near their driest. 
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Figure A50. Predicted soil moisture at Taihape on 25 June, when soils are near their wettest. 

Yield 

 
Figure A51. Predicted annual lucerne yield at Taihape for 2020. 
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Taumarunui 

Sampling 

 
Figure A52. Location of sampling domain, WSN gateway, and sensor nodes at Taumarunui. 

Scorpan covariates 

 
Figure A53. Elevation at Taumarunui. 
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Figure A54. Slope at Taumarunui. 

 

 

Figure A55. Aspect at Taumarunui. 
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Figure A56. Topographic wetness index at Taumarunui. 

 

 

Figure A57. Elasp at Taumarunui. 
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Soil temperature 

 

Figure A58. Daily median soil temperature data for the Taumarunui WSN after trimming of 

the start and end dates, and removal of low and high temperatures, and periods of no 

change in soil temperature. Panel labels indicate the respective sensor node. Points that were 

removed as a result of the data trimming are shown in orange, while presumed valid points 

are in black.  
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Figure A59. Measured versus fitted soil temperature plot for the Taumarunui site using 

model 5. Panel labels indicate the respective sensor node. 

 

 

Figure A60. Measured (points) versus fitted (line) soil temperature for the Taumarunui site 

over time, using model 5. Panel labels indicate the respective sensor node. 
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Figure A61. Predicted soil temperature at Taumarunui on 15 January, when soils are near  

their warmest. 

 
Figure A62. Predicted soil temperature at Taumarunui on 15 July, when soils are near their 

coolest. 
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Soil moisture 

 

Figure A63. Daily median soil moisture data for the Taumarunui site after trimming of the 

start and end dates, and removal of low and high soil moisture values, and periods of no 

change in soil moisture. Panel labels indicate the respective sensor node. Points excised from 

the data have been coloured orange. 

 

Figure A64. Measured versus fitted soil moisture plot for the Taumarunui site using model 1. 

Panel labels indicate the respective sensor node. 
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Figure A65. Measured (points) versus fitted (line) soil moisture for the Taumarunui site over 

time, using model 1. Panel labels indicate the respective sensor node. 

 

Figure A66. Predicted soil moisture at Taumarunui on 1 March, when soils are near their 

driest. 
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Figure A67. Predicted soil moisture at Taumarunui on 25 June, when soils are near their 

wettest. 

 

Yield 

 
Figure A68. Predicted annual lucerne yield at Taumarunui for 2020. 
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Tourere 

Sampling 

 

Figure A69. Location of sampling domain, WSN gateway, and sensor nodes at Tourere. 

 

Scorpan covariates 

 

Figure A70. Elevation at Tourere. 
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Figure A71. Slope at Tourere. 

 

 

Figure A72. Aspect at Tourere. 
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Figure A73. Topographic wetness index at Tourere. 

 

 

Figure A74. Elasp at Tourere. 
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Soil temperature 

 

Figure A75. Daily median soil temperature data for the Tourere WSN after trimming of the 

start and end dates, and removal of low and high temperatures, and periods of no change in 

soil temperature. Panel labels indicate the respective sensor node. Points that were removed 

as a result of the data trimming are shown in orange, while presumed valid points are in 

black.  
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Figure A76. Measured versus fitted soil temperature plot for the Tourere site using model 5. 

Panel labels indicate the respective sensor node. 

 

Figure A77. Measured (points) versus fitted (line) soil temperature for the Tourere site over 

time, using model 5. Panel labels indicate the respective sensor node. 
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Figure A78. Predicted soil temperature at Tourere on 15 January, when soils are near their 

warmest. 

 
Figure A79. Predicted soil temperature at Tourere on 15 July, when soils are near their 

coolest. 
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Soil moisture 

 

Figure A80. Daily median soil moisture data for the Tourere site after trimming of the start 

and end dates, and removal of low and high soil moisture values, and periods of no change 

in soil moisture. Panel labels indicate the respective sensor node. Points excised from the 

data have been coloured orange. 

 

Figure A81. Measured versus fitted soil moisture plot for the Tourere site using model 1. 

Panel labels indicate the respective sensor node. 
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Figure A82. Measured (points) versus fitted (line) soil moisture for the Tourere site over time, 

using model 1. Panel labels indicate the respective sensor node. 

 
Figure A83. Predicted soil moisture at Tourere on 1 March, when soils are near their driest. 
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Figure A84. Predicted soil moisture at Tourere on 25 June, when soils are near their wettest. 

 

Yield 

 

Figure A85. Predicted annual lucerne yield at Tourere for 2020. 
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